Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter
English
Atom transfer radical polymerization of methyl acrylate, methyl methacrylate and styrene in the presence of trolamine as a highly effective promoter
-
Key words:
- Atom transfer radical polymerization
- / Catalysis
- / Kinetics
- / Trolamine
- / Promoter
-
-
-
[1] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium( II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization,Macromolecules 28 (1995) 1721-1723.[1] M. Kato, M. Kamigaito, M. Sawamoto, T. Higashimura, Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium( II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization,Macromolecules 28 (1995) 1721-1723.
-
[2] J.S. Wang, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (1995) 5614-5615.[2] J.S. Wang, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes, J. Am. Chem. Soc. 117 (1995) 5614-5615.
-
[3] Y. Shi, Z.F. Fu, Y.D. Zhang, S.K. Jiao, Synthesis of comb like poly(methyl methacrylate) by atom transfer radical polymerization with poly(ethyl 2-bromoacrylate) as macroinitiator, Chin. Chem. Lett. 14 (2003) 1289-1292.[3] Y. Shi, Z.F. Fu, Y.D. Zhang, S.K. Jiao, Synthesis of comb like poly(methyl methacrylate) by atom transfer radical polymerization with poly(ethyl 2-bromoacrylate) as macroinitiator, Chin. Chem. Lett. 14 (2003) 1289-1292.
-
[4] Y. Yi, X.H. Wan, X.H. Fan, R. Dong, Q.F. Zhou, Synthesis of a novel hybrid liquidcrystalline rod-coil diblock copolymer, J. Polym. Sci. Polym. Chem. 41 (2003) 1799-1806.[4] Y. Yi, X.H. Wan, X.H. Fan, R. Dong, Q.F. Zhou, Synthesis of a novel hybrid liquidcrystalline rod-coil diblock copolymer, J. Polym. Sci. Polym. Chem. 41 (2003) 1799-1806.
-
[5] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Effect of spacer length on the liquid crystalline property of azobenzene-containing ABA-type triblock copolymers via ATRP, Chin. Chem. Lett. 18 (2007) 1129-1132.[5] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Effect of spacer length on the liquid crystalline property of azobenzene-containing ABA-type triblock copolymers via ATRP, Chin. Chem. Lett. 18 (2007) 1129-1132.
-
[6] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Synthesis and characterization of H-type amphiphilic liquid crystalline block copolymers by ATRP, Chin. Chem. Lett. 19 (2008) 237-240.[6] X.D. Tang, L.C. Gao, X.H. Fan, Q.F. Zhou, Synthesis and characterization of H-type amphiphilic liquid crystalline block copolymers by ATRP, Chin. Chem. Lett. 19 (2008) 237-240.
-
[7] K. Matyjaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, Gradient copolymers by atom transfer radical copolymerization, J. Phys. Org. Chem. 13 (2000) 775-786.[7] K. Matyjaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, Gradient copolymers by atom transfer radical copolymerization, J. Phys. Org. Chem. 13 (2000) 775-786.
-
[8] Y.J. Xu, C.Y. Pan, Block and star-block copolymers by mechanism transformation. 3. S-(PTHF-PSt)4 and S-(PTHF-PSt-PMMA)4 from living CROP to ATRP, Macromolecules 33 (2000) 4750-4756.[8] Y.J. Xu, C.Y. Pan, Block and star-block copolymers by mechanism transformation. 3. S-(PTHF-PSt)4 and S-(PTHF-PSt-PMMA)4 from living CROP to ATRP, Macromolecules 33 (2000) 4750-4756.
-
[9] X.D. Tang, X.H. Fan, X.F. Chen, Q.F. Zhou, Progress of atom transfer radical polymerization (ATRP) applied to the synthesis of star polymers, Prog. Chem. 17 (2005) 1089-1095 (in Chinese).[9] X.D. Tang, X.H. Fan, X.F. Chen, Q.F. Zhou, Progress of atom transfer radical polymerization (ATRP) applied to the synthesis of star polymers, Prog. Chem. 17 (2005) 1089-1095 (in Chinese).
-
[10] S.G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of branched and hyperbranched polystyrenes, Macromolecules 29 (1996) 1079-1081.[10] S.G. Gaynor, S. Edelman, K. Matyjaszewski, Synthesis of branched and hyperbranched polystyrenes, Macromolecules 29 (1996) 1079-1081.
-
[11] M.R. Leduc, C.J. Hawker, J. Dao, J.M.J. Fréchet, Dendritic initiators for "living" radical polymerizations: a versatile approach to the synthesis of dendritic-linear block copolymers, J. Am. Chem. Soc. 118 (1996) 11111-11118.[11] M.R. Leduc, C.J. Hawker, J. Dao, J.M.J. Fréchet, Dendritic initiators for "living" radical polymerizations: a versatile approach to the synthesis of dendritic-linear block copolymers, J. Am. Chem. Soc. 118 (1996) 11111-11118.
-
[12] Y.L. Zhao, C.F. Chen, F. Xi, Synthesis of well-defined dendritic-linear diblock and triblock copolymers by controlled free radical polymerization, Chin. Chem. Lett. 13 (2002) 217-218.[12] Y.L. Zhao, C.F. Chen, F. Xi, Synthesis of well-defined dendritic-linear diblock and triblock copolymers by controlled free radical polymerization, Chin. Chem. Lett. 13 (2002) 217-218.
-
[13] C.H. Hu, A.Q. Zhang, Atom transfer radical polymerization of methyl methacrylate initiated by p-chloromethylstyrene copolymers, Fine Chem. 23 (2006) 298-301 (in Chinese).[13] C.H. Hu, A.Q. Zhang, Atom transfer radical polymerization of methyl methacrylate initiated by p-chloromethylstyrene copolymers, Fine Chem. 23 (2006) 298-301 (in Chinese).
-
[14] F. Simal, A. Demonceau, A.F. Noels, Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers, Angew. Chem. Int. Ed. 38 (1999) 538-540.[14] F. Simal, A. Demonceau, A.F. Noels, Highly efficient ruthenium-based catalytic systems for the controlled free-radical polymerization of vinyl monomers, Angew. Chem. Int. Ed. 38 (1999) 538-540.
-
[15] K. Matyjaszewski, S. Coca, C.B. Jasieczek, Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate, Macromol. Chem. Phys. 198 (1997) 4011-4017.[15] K. Matyjaszewski, S. Coca, C.B. Jasieczek, Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of glycidyl acrylate, Macromol. Chem. Phys. 198 (1997) 4011-4017.
-
[16] K. Matyjaszewski, S.M. Jo, H.J. Paik, D.A. Shipp, An Investigation into the CuX/2, 2'-Bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile, Macromolecules 32 (1999) 6431-6438.[16] K. Matyjaszewski, S.M. Jo, H.J. Paik, D.A. Shipp, An Investigation into the CuX/2, 2'-Bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile, Macromolecules 32 (1999) 6431-6438.
-
[17] X.D. Tang, X.C. Liang, N.F. Han, Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP, Chin. Chem. Lett. 20 (2009) 1353-1356.[17] X.D. Tang, X.C. Liang, N.F. Han, Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) synthesized by ATRP, Chin. Chem. Lett. 20 (2009) 1353-1356.
-
[18] K. Matyjaszewski, T. Pintauer, S. Gaynor, Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins, Macromolecules 33 (2000) 1476-1478.[18] K. Matyjaszewski, T. Pintauer, S. Gaynor, Removal of copper-based catalyst in atom transfer radical polymerization using ion exchange resins, Macromolecules 33 (2000) 1476-1478.
-
[19] Y.Q. Shen, H.D. Tang, S.J. Ding, Catalyst separation in atom transfer radical polymerization, Prog. Polym. Sci. 29 (2004) 1053-1078.[19] Y.Q. Shen, H.D. Tang, S.J. Ding, Catalyst separation in atom transfer radical polymerization, Prog. Polym. Sci. 29 (2004) 1053-1078.
-
[20] J.H. Xia, T. Johnson, S.G. Gaynor, K. Matyjaszewski, J. De Simone, Atom transfer radical polymerization in supercritical carbon dioxide, Macromolecules 32 (1999) 4802-4805.[20] J.H. Xia, T. Johnson, S.G. Gaynor, K. Matyjaszewski, J. De Simone, Atom transfer radical polymerization in supercritical carbon dioxide, Macromolecules 32 (1999) 4802-4805.
-
[21] J.V. Nguyen, C.W. Jones, Design, behavior, and recycling of silica-supported CuBrbipyridine ATRP catalysts, Macromolecules 37 (2004) 1190-1203.[21] J.V. Nguyen, C.W. Jones, Design, behavior, and recycling of silica-supported CuBrbipyridine ATRP catalysts, Macromolecules 37 (2004) 1190-1203.
-
[22] W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules 39 (2006) 39-45.[22] W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules 39 (2006) 39-45.
-
[23] K. Matyjaszewski, W. Jakubowski, K. Min, et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15309-15314.[23] K. Matyjaszewski, W. Jakubowski, K. Min, et al., Diminishing catalyst concentration in atom transfer radical polymerization with reducing agents, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15309-15314.
-
[24] D.M. Haddleton, A.M. Heming, D. Kukulj, D.J. Duncalf, A.J. Shooter, Atom transfer polymerization of methyl methacrylate. Effect of acids and effect with 2-bromo-2-methylpropionic acid initiation, Macromolecules 31 (1998) 2016-2018.[24] D.M. Haddleton, A.M. Heming, D. Kukulj, D.J. Duncalf, A.J. Shooter, Atom transfer polymerization of methyl methacrylate. Effect of acids and effect with 2-bromo-2-methylpropionic acid initiation, Macromolecules 31 (1998) 2016-2018.
-
[25] K.Matyjaszewski, S. Coca, S.G. Gaynor,M.L.Wei, B.E.Woodworth, Zerovalentmetals in controlled/"living" radical polymerization,Macromolecules 30 (1997) 7348-7350.[25] K.Matyjaszewski, S. Coca, S.G. Gaynor,M.L.Wei, B.E.Woodworth, Zerovalentmetals in controlled/"living" radical polymerization,Macromolecules 30 (1997) 7348-7350.
-
[26] K. Min, H.F. Gao, K. Matyjaszewski, Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET), J. Am. Chem. Soc. 127 (2005) 3825-3830.[26] K. Min, H.F. Gao, K. Matyjaszewski, Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET), J. Am. Chem. Soc. 127 (2005) 3825-3830.
-
[27] K. Min, W. Jakubowski, K. Matyjaszewski, AGET ATRP in the presence of air in miniemulsion and in bulk, Macromol. Rapid Commun. 27 (2006) 594-598.[27] K. Min, W. Jakubowski, K. Matyjaszewski, AGET ATRP in the presence of air in miniemulsion and in bulk, Macromol. Rapid Commun. 27 (2006) 594-598.
-
[28] Y.X. Wang, X.L. Li, F.F. Du, et al., Use of alcohols as reducing agents for synthesis of well-defined polymers by AGET-ATRP, Chem. Commun. 48 (2012) 2800-2802.[28] Y.X. Wang, X.L. Li, F.F. Du, et al., Use of alcohols as reducing agents for synthesis of well-defined polymers by AGET-ATRP, Chem. Commun. 48 (2012) 2800-2802.
-
[29] Y.T. Luo, J.M. Zhuang, X.R. Lin, et al., Study of rate-accelerating of aluminum hydroxide, boric acid, and (2-methylpropyl) boronic acid for atom transfer radical polymerization of styrene, J. Xiamen Univ. 47 (2008) 63-66 (in Chinese).[29] Y.T. Luo, J.M. Zhuang, X.R. Lin, et al., Study of rate-accelerating of aluminum hydroxide, boric acid, and (2-methylpropyl) boronic acid for atom transfer radical polymerization of styrene, J. Xiamen Univ. 47 (2008) 63-66 (in Chinese).
-
[30] H. Zhang, D.M. Xu, K.D. Zhang, Effect of inhibitors on atom transfer radical polymerization of MMA, Chin. J. Chem. 23 (2005) 913-917.[30] H. Zhang, D.M. Xu, K.D. Zhang, Effect of inhibitors on atom transfer radical polymerization of MMA, Chin. J. Chem. 23 (2005) 913-917.
-
[31] H.D. Tang, Y.Q. Shen, B.G. Li, M. Radosz, Tertiary amine-enhanced activity of ATRP catalysts CuBr/TPMA and CuBr/Me6TREN, Macromol. Rapid Commun. 29 (2008) 1834-1838.[31] H.D. Tang, Y.Q. Shen, B.G. Li, M. Radosz, Tertiary amine-enhanced activity of ATRP catalysts CuBr/TPMA and CuBr/Me6TREN, Macromol. Rapid Commun. 29 (2008) 1834-1838.
-
[32] H.D. Tang, N. Arulsamy, M. Radosz, et al., Highly active copper-based catalyst for atom transfer radical polymerization, J. Am. Chem. Soc. 128 (2006) 16277-16285.[32] H.D. Tang, N. Arulsamy, M. Radosz, et al., Highly active copper-based catalyst for atom transfer radical polymerization, J. Am. Chem. Soc. 128 (2006) 16277-16285.
-
[33] H.D. Tang, M. Radosz, Y.Q. Shen, CuBr2/N,N,N',N'-tetra-[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atomtransfer radical polymerization via activator generated by electron transfer, Macromol. Rapid Commun. 27 (2006) 1127-1131.[33] H.D. Tang, M. Radosz, Y.Q. Shen, CuBr2/N,N,N',N'-tetra-[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atomtransfer radical polymerization via activator generated by electron transfer, Macromol. Rapid Commun. 27 (2006) 1127-1131.
-
[34] J. Queffelec, S.G. Gaynor, K. Matyjaszewski, Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst, Macromolecules 33 (2000) 8629-8639.[34] J. Queffelec, S.G. Gaynor, K. Matyjaszewski, Optimization of atom transfer radical polymerization using Cu(I)/tris(2-(dimethylamino)ethyl)amine as a catalyst, Macromolecules 33 (2000) 8629-8639.
-
[35] X. Huang, M.J. Wirth, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules 32 (1999) 1694-1696.[35] X. Huang, M.J. Wirth, Surface initiation of living radical polymerization for growth of tethered chains of low polydispersity, Macromolecules 32 (1999) 1694-1696.
-
[36] J.H. Xia, S.G. Gaynor, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature, Macromolecules 31 (1998) 5958-5959.[36] J.H. Xia, S.G. Gaynor, K. Matyjaszewski, Controlled/"living" radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature, Macromolecules 31 (1998) 5958-5959.
-
[37] J.F. Weiss, G. Tollin, J.T. Yoke, Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis(triethylamine)copper(II), Inorg. Chem. 3 (1964) 1344-1348.[37] J.F. Weiss, G. Tollin, J.T. Yoke, Reactions of triethylamine with copper halides. II. Internal oxidation-reduction of dichlorobis(triethylamine)copper(II), Inorg. Chem. 3 (1964) 1344-1348.
-
[38] M.T. Caudle, V.L. Pecoraro, Mechanism for the reduction of the mixed-valent MnIIIMnIV[2-OHsalpn]2+ complex by tertiary amines, Inorg. Chem. 39 (2000) 5831-5837.[38] M.T. Caudle, V.L. Pecoraro, Mechanism for the reduction of the mixed-valent MnIIIMnIV[2-OHsalpn]2+ complex by tertiary amines, Inorg. Chem. 39 (2000) 5831-5837.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1353
- HTML全文浏览量: 27

下载: