Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure

Ai-Ling Li Yan-Ping Ma Dong Qiu

Citation:  Ai-Ling Li, Yan-Ping Ma, Dong Qiu. Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure[J]. Chinese Chemical Letters, 2015, 26(6): 768-772. doi: 10.1016/j.cclet.2015.03.004 shu

Formation of six-coordinated silicon in calcium phosphosilicate xerogels assisted by polyols at low temperature and pressure

    通讯作者: Ai-Ling Li,
    Dong Qiu,
  • 基金项目:

    This work was supported by the State Key Development Program of Basic Research of China (No. 2012CB933200)  (No. 2012CB933200)

    National Natural Science Foundation of China (No. 51173193). (No. 51173193)

摘要: Silicon is usually found to be four-coordinated when neighbored with oxygen. Six-coordinated silicon is only seen in samples at very specific composition or made at high temperature/pressure. In this study, we managed to synthesize calciumphosphosilicate xerogels containing six-coordinated silicon with the help of polyols by sol-gel method, without the need of treatment at high temperature or high pressure. Both phosphorus precursors and polyols were found to be essential for the formation of six-coordinated silicon species; in the absence of either species, only normal four-coordinated silicon was observed under otherwise identical conditions. Samples containing six-coordinated silicon sites were found to release silicon species faster than those without six-coordinated silicon sites upon dissolved in water, suggesting that six-coordinated silicon species have higher reactivity toward hydrolysis.

English

  • 
    1. [1] M. Nogami, K. Miyamura, Y. Abe, Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses, J. Electrochem. Soc. 144 (1997) 2175–2178.[1] M. Nogami, K. Miyamura, Y. Abe, Fast protonic conductors of water-containing P2O5–ZrO2–SiO2 glasses, J. Electrochem. Soc. 144 (1997) 2175–2178.

    2. [2] N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses, J. Mater. Chem. 12 (2002) 3746–3753.[2] N.J. Clayden, S. Esposito, P. Pernice, A. Aronne, Solid state 1H NMR study, humidity sensitivity and protonic conduction of gel derived phosphosilicate glasses, J. Mater. Chem. 12 (2002) 3746–3753.

    3. [3] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem. 19 (2009) 690–701.[3] E.A. Abou Neel, D.M. Pickup, S.P. Valappil, R.J. Newport, J.C. Knowles, Bioactive functional materials: a perspective on phosphate-based glasses, J. Mater. Chem. 19 (2009) 690–701.

    4. [4] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487– 1510.[4] L.L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74 (1991) 1487– 1510.

    5. [5] J. Ide, K. Ozutsumi, H. Kageyama, XAFS study of six-coordinated silicon in R2O–SiO2–P2O5 (R = Li, Na, K) glasses, J. Non-Cryst. Solids 353 (2007) 1966–1969.[5] J. Ide, K. Ozutsumi, H. Kageyama, XAFS study of six-coordinated silicon in R2O–SiO2–P2O5 (R = Li, Na, K) glasses, J. Non-Cryst. Solids 353 (2007) 1966–1969.

    6. [6] P. Melnikov, S.B. Santagnelli, F.J. dos Santos, et al., Phosphate functionalization of spongiolite surface, Mater. Chem. Phys. 82 (2003) 980–983.[6] P. Melnikov, S.B. Santagnelli, F.J. dos Santos, et al., Phosphate functionalization of spongiolite surface, Mater. Chem. Phys. 82 (2003) 980–983.

    7. [7] R. Dupree, D. Holland, M.G. Mortuza, J.A. Collins, M.W.G. Lockyer, Magic angle spinning NMR of alkali phosphor-alumino-silicate glasses, J. Non-Cryst. Solids 112 (1989) 111–119.[7] R. Dupree, D. Holland, M.G. Mortuza, J.A. Collins, M.W.G. Lockyer, Magic angle spinning NMR of alkali phosphor-alumino-silicate glasses, J. Non-Cryst. Solids 112 (1989) 111–119.

    8. [8] N.J. Clayden, S. Esposito, P. Pernice, A.J. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses, J. Mater. Chem. 11 (2001) 936–943.[8] N.J. Clayden, S. Esposito, P. Pernice, A.J. Aronne, Solid state 29Si and 31P NMR study of gel derived phosphosilicate glasses, J. Mater. Chem. 11 (2001) 936–943.

    9. [9] I. EI-Sayed, Y. Hatanaka, S. Onozawa, M.J. Tanaka, Unusual locking of silicon chains in to all-transoid conformation by pentacoordinate silicon atoms, Am. Chem. Soc. 123 (2001) 3597–3598.[9] I. EI-Sayed, Y. Hatanaka, S. Onozawa, M.J. Tanaka, Unusual locking of silicon chains in to all-transoid conformation by pentacoordinate silicon atoms, Am. Chem. Soc. 123 (2001) 3597–3598.

    10. [10] I. El-Sayed, Y. Hatanaka, C. Muguruma, et al., Synthesis, X-ray structure, and electronic properties of oligosilanes containing pentacoordinate silicon moieties at internal positions, J. Am. Chem. Soc. 121 (1999) 5095–5096.[10] I. El-Sayed, Y. Hatanaka, C. Muguruma, et al., Synthesis, X-ray structure, and electronic properties of oligosilanes containing pentacoordinate silicon moieties at internal positions, J. Am. Chem. Soc. 121 (1999) 5095–5096.

    11. [11] C. Muguruma, N. Koga, Y. Hatanaka, et al., Theoretical study of ultraviolet absorption spectra of tetra- and pentacoordinate silicon compounds, J. Phys. Chem. A 104 (2000) 4928–4935.[11] C. Muguruma, N. Koga, Y. Hatanaka, et al., Theoretical study of ultraviolet absorption spectra of tetra- and pentacoordinate silicon compounds, J. Phys. Chem. A 104 (2000) 4928–4935.

    12. [12] I. Kalikhman, O. Girshberg, L. Lameyer, D. Stalke, D. Kost, Tautomeric equilibrium between penta- and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons, J. Am. Chem. Soc. 123 (2001) 4709–4716.[12] I. Kalikhman, O. Girshberg, L. Lameyer, D. Stalke, D. Kost, Tautomeric equilibrium between penta- and hexacoordinate silicon chelates. A chloride bridge between two pentacoordinate silicons, J. Am. Chem. Soc. 123 (2001) 4709–4716.

    13. [13] M. Nakash, M. Goldvaser, Formation of hypervalent complexes of PhCCSiF3 with pyridine through intermolecular silicon nitrogen interaction, J. Am. Chem. Soc. 126 (2004) 3436–3437.[13] M. Nakash, M. Goldvaser, Formation of hypervalent complexes of PhCCSiF3 with pyridine through intermolecular silicon nitrogen interaction, J. Am. Chem. Soc. 126 (2004) 3436–3437.

    14. [14] I. Kalikhman, B. Gostevskii, O. Girshberg, S. Krivonos, D. Kost, Donor-stabilized silyl cations 4: N-isopropylidene hydrazides, novel bidentate ligands for pentaand hexacoordinate silicon chelates, Organometallics 21 (2002) 2551–2554.[14] I. Kalikhman, B. Gostevskii, O. Girshberg, S. Krivonos, D. Kost, Donor-stabilized silyl cations 4: N-isopropylidene hydrazides, novel bidentate ligands for pentaand hexacoordinate silicon chelates, Organometallics 21 (2002) 2551–2554.

    15. [15] N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo) phenyl group, J. Am. Chem. Soc. 128 (2006) 7097–7109.[15] N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo) phenyl group, J. Am. Chem. Soc. 128 (2006) 7097–7109.

    16. [16] J.B. Lambert, S.R. Singer, Self-assembled macrocycles with pentavalent silicon linkages, J. Organomet. Chem. 689 (2004) 2293–2302.[16] J.B. Lambert, S.R. Singer, Self-assembled macrocycles with pentavalent silicon linkages, J. Organomet. Chem. 689 (2004) 2293–2302.

    17. [17] G. Serghiou, R. Boehler, A. Chopelas, Reversible coordination changes in crystalline silicates at high pressure and ambient temperature, J. Phys. Condens. Matter 12 (2000) 849–857.[17] G. Serghiou, R. Boehler, A. Chopelas, Reversible coordination changes in crystalline silicates at high pressure and ambient temperature, J. Phys. Condens. Matter 12 (2000) 849–857.

    18. [18] M. Nogami, K. Miyamura, Y. Kawasaki, Y. Abe, Six-coordinated silicon in SrO– P2O5–SiO2 glasses, J. Non-Cryst. Solids 211 (1997) 208–213.[18] M. Nogami, K. Miyamura, Y. Kawasaki, Y. Abe, Six-coordinated silicon in SrO– P2O5–SiO2 glasses, J. Non-Cryst. Solids 211 (1997) 208–213.

    19. [19] T.L. Weeding, B.H.W.S.W. de Jong, S. Veeman, B.G. Aitken, Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass, Nature 318 (1985) 352–353.[19] T.L. Weeding, B.H.W.S.W. de Jong, S. Veeman, B.G. Aitken, Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass, Nature 318 (1985) 352–353.

    20. [20] E. Ohtani, F. Taulelle, C.A. Angell, Al3+ coordination changes in liquid aluminosilicates under pressure, Nature 314 (1985) 78–81.[20] E. Ohtani, F. Taulelle, C.A. Angell, Al3+ coordination changes in liquid aluminosilicates under pressure, Nature 314 (1985) 78–81.

    21. [21] X. Xue, J.F. Stebbins, M. Kanzaki, R.G. Tronnes, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245 (1989) 962–964.[21] X. Xue, J.F. Stebbins, M. Kanzaki, R.G. Tronnes, Silicon coordination and speciation changes in a silicate liquid at high pressures, Science 245 (1989) 962–964.

    22. [22] J.F. Stebbins, M. Kanzaki, Local structure and chemical shifts for six-coordinated silicon in high-pressure mantle phases, Science 251 (1991) 294–298.[22] J.F. Stebbins, M. Kanzaki, Local structure and chemical shifts for six-coordinated silicon in high-pressure mantle phases, Science 251 (1991) 294–298.

    23. [23] S.D. Kinrade, J.W.D. Nin, A.S. Schach, et al., Stable five- and six-coordinated silicate anions in aqueous solution, Science 285 (1999) 1542–1545.[23] S.D. Kinrade, J.W.D. Nin, A.S. Schach, et al., Stable five- and six-coordinated silicate anions in aqueous solution, Science 285 (1999) 1542–1545.

    24. [24] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates, Chem. Phys. Lett. 258 (1996) 107–112.[24] P. Hartmann, C. Jana, J. Vogel, C. Jager, P-31 MAS and 2D exchange NMR of crystalline silicon phosphates, Chem. Phys. Lett. 258 (1996) 107–112.

    25. [25] D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko, T. Uchino, Structure and formation mechanism of six-fold coordinated silicon in phosphosilicate glasses, Phys. Rev. B 71 (2005) 172202.[25] D. Miyabe, M. Takahashi, Y. Tokuda, T. Yoko, T. Uchino, Structure and formation mechanism of six-fold coordinated silicon in phosphosilicate glasses, Phys. Rev. B 71 (2005) 172202.

    26. [26] C. Coelho, F. Babonneau, T. Azaís, et al., Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived solid state NMR techniques, J. Sol–Gel. Sci. Technol. 40 (2006) 181–189.[26] C. Coelho, F. Babonneau, T. Azaís, et al., Chemical bonding in silicophosphate gels: contribution of dipolar and J-derived solid state NMR techniques, J. Sol–Gel. Sci. Technol. 40 (2006) 181–189.

    27. [27] S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of phosphosilicate gels-Si-29 and P-31 MAS NMR-study, J. Non-Cryst. Solids 143 (1992) 21–30.[27] S.P. Szu, L.C. Klein, M. Greenblatt, Effect of precursors on the structure of phosphosilicate gels-Si-29 and P-31 MAS NMR-study, J. Non-Cryst. Solids 143 (1992) 21–30.

    28. [28] A. Li, D. Wang, J. Xiang, et al., Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology, J. Non-Cryst. Solids 357 (2011) 3548–3555.[28] A. Li, D. Wang, J. Xiang, et al., Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology, J. Non-Cryst. Solids 357 (2011) 3548–3555.

    29. [29] R. Dupree, D. Holland, M.G. Mortuza, 6-Coordinated silicon in glasses, Nature 328 (1987) 416–417.[29] R. Dupree, D. Holland, M.G. Mortuza, 6-Coordinated silicon in glasses, Nature 328 (1987) 416–417.

    30. [30] S. Prabakar, K.J. Rao, C.N.R. Rao, A MAS NMR investigation of lead phosphosilicate glasses: the nature of the highly deshielded six-coordinated silicon, Mater. Res. Bull. 26 (1991) 285–294.[30] S. Prabakar, K.J. Rao, C.N.R. Rao, A MAS NMR investigation of lead phosphosilicate glasses: the nature of the highly deshielded six-coordinated silicon, Mater. Res. Bull. 26 (1991) 285–294.

    31. [31] M.G. Mortuza, M.R. Ahsan, J.A. Chudek, G. Hunter, First evidence for the coexistence of four-, five- and six-coordinated silicon in glasses prepared at ambient pressure, Chem. Commun. (2000) 2055–2056.[31] M.G. Mortuza, M.R. Ahsan, J.A. Chudek, G. Hunter, First evidence for the coexistence of four-, five- and six-coordinated silicon in glasses prepared at ambient pressure, Chem. Commun. (2000) 2055–2056.

    32. [32] V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, Development of soluble glasses for biomedical use: Part II. The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci.: Mater. Med. 11 (2000) 615-620.[32] V. Salih, K. Franks, M. James, G.W. Hastings, J.C. Knowles, Development of soluble glasses for biomedical use: Part II. The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J. Mater. Sci.: Mater. Med. 11 (2000) 615-620.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1259
  • HTML全文浏览量:  16
文章相关
  • 发布日期:  2015-03-09
  • 收稿日期:  2014-11-03
  • 网络出版日期:  2015-02-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章