Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus

Shi Ding Wen-Ke Wang Qiao Cao Wen-Jing Chu Le-Fu Lan Wen-Hao Hu Yu-She Yang

Citation:  Shi Ding, Wen-Ke Wang, Qiao Cao, Wen-Jing Chu, Le-Fu Lan, Wen-Hao Hu, Yu-She Yang. Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus[J]. Chinese Chemical Letters, 2015, 26(6): 763-767. doi: 10.1016/j.cclet.2015.03.029 shu

Design, synthesis and biological evaluation of LpxC inhibitors with novel hydrophilic terminus

    通讯作者: Yu-She Yang,
  • 基金项目:

    Manufacturing Program, China (No. 2014ZX09507009-016). (No. 2014ZX09507009-016)

摘要: In order to develop novel LpxC inhibitors with good activities and metabolic stability, two series of compounds with hydrophilic terminus have been synthesized and their in vitro antibacterial activities against Escherichial coli and Pseudomonas aeruginosa were evaluated. Especially, compounds 22b and c exhibited comparable antibacterial activities to CHIR-090 and better metabolic stability than CHIR-090 and LPC-011 in liver microsomes (rat andmouse), which indicated the terminal methylsulfone may be a preferred structure in the design of LpxC inhibitors and worthy of further investigations.

English

  • 
    1. [1] M.F. Brown, U. Reilly, J.A. Abramite, et al., Potent inhibitors of LpxC for the treatment of Gram-negative infections, J. Med. Chem. 55 (2012) 914-923.[1] M.F. Brown, U. Reilly, J.A. Abramite, et al., Potent inhibitors of LpxC for the treatment of Gram-negative infections, J. Med. Chem. 55 (2012) 914-923.

    2. [2] T.J.O. Wyckoff, C.R.H. Raetz, J.E. Jackman, Antibacterial and anti-inflammatory agents that target endotoxin, Trends Microbiol. 6 (1998) 154-159.[2] T.J.O. Wyckoff, C.R.H. Raetz, J.E. Jackman, Antibacterial and anti-inflammatory agents that target endotoxin, Trends Microbiol. 6 (1998) 154-159.

    3. [3] A.W. Barb, A.L. McClerren, K. Snehelatha, et al., Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli, Biochemistry 46 (2007) 3793-3802.[3] A.W. Barb, A.L. McClerren, K. Snehelatha, et al., Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli, Biochemistry 46 (2007) 3793-3802.

    4. [4] H.R. Onishi, B.A. Pelak, L.S. Gerckens, et al., Antibacterial agents that inhibit lipid A biosynthesis, Science 274 (1996) 980-982.[4] H.R. Onishi, B.A. Pelak, L.S. Gerckens, et al., Antibacterial agents that inhibit lipid A biosynthesis, Science 274 (1996) 980-982.

    5. [5] D.A. Whittington, K.M. Rusche, H. Shin, C.A. Fierke, D.W. Christianson, Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 8146-8150.[5] D.A. Whittington, K.M. Rusche, H. Shin, C.A. Fierke, D.W. Christianson, Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 8146-8150.

    6. [6] B.E. Coggins, X.C. Li, A.L. McClerren, et al., Structure of the LpxC deacetylase with a bound substrate-analog inhibitor, Nat. Struct. Mol. Biol. 10 (2003) 645-651.[6] B.E. Coggins, X.C. Li, A.L. McClerren, et al., Structure of the LpxC deacetylase with a bound substrate-analog inhibitor, Nat. Struct. Mol. Biol. 10 (2003) 645-651.

    7. [7] M.H. Chen, M.G. Steiner, S.E. de Laszlo, et al., Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis, Bioorg. Med. Chem. Lett. 9 (1999) 313-318.[7] M.H. Chen, M.G. Steiner, S.E. de Laszlo, et al., Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis, Bioorg. Med. Chem. Lett. 9 (1999) 313-318.

    8. [8] J.E. Jackman, C.A. Fierke, L.N. Tumey, et al., Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria, J. Biol. Chem. 275 (2000) 11002-11009.[8] J.E. Jackman, C.A. Fierke, L.N. Tumey, et al., Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria, J. Biol. Chem. 275 (2000) 11002-11009.

    9. [9] M.C. Pirrung, L.N. Tumey, C.R.H. Raetz, et al., Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups, J. Med. Chem. 45 (2002) 4359-4370.[9] M.C. Pirrung, L.N. Tumey, C.R.H. Raetz, et al., Inhibition of the antibacterial target UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC): isoxazoline zinc amidase inhibitors bearing diverse metal binding groups, J. Med. Chem. 45 (2002) 4359-4370.

    10. [10] P. Calí, L. Nærum, S. Mukhija, A. Hjelmencrantz, Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents, Bioorg. Med. Chem. Lett. 14 (2004) 5997-6000.[10] P. Calí, L. Nærum, S. Mukhija, A. Hjelmencrantz, Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents, Bioorg. Med. Chem. Lett. 14 (2004) 5997-6000.

    11. [11] J.M. Clements, F. Coignard, I. Johnson, et al., Antibacterial activities and characterization of novel inhibitors of LpxC, Antimicrob. Agents Chemother. 46 (2002) 1793-1799.[11] J.M. Clements, F. Coignard, I. Johnson, et al., Antibacterial activities and characterization of novel inhibitors of LpxC, Antimicrob. Agents Chemother. 46 (2002) 1793-1799.

    12. [12] J. Zhang, L. Zhang, X. Li, W. Xu, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents, Curr. Med. Chem. 19 (2012) 2038-2050.[12] J. Zhang, L. Zhang, X. Li, W. Xu, UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents, Curr. Med. Chem. 19 (2012) 2038-2050.

    13. [13] C.J. Lee, X.F. Liang, X. Chen, et al., Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design, Chem. Biol. 18 (2011) 38-47.[13] C.J. Lee, X.F. Liang, X. Chen, et al., Species-specific and inhibitor-dependent conformations of LpxC: implications for antibiotic design, Chem. Biol. 18 (2011) 38-47.

    14. [14] X.F. Liang, C.J. Lee, X. Chen, et al., Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold, Bioorg. Med. Chem. 19 (2011) 852-860.[14] X.F. Liang, C.J. Lee, X. Chen, et al., Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold, Bioorg. Med. Chem. 19 (2011) 852-860.

    15. [15] J.I. Montgomery, M.F. Brown, U. Reilly, et al., Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections, J. Med. Chem. 55 (2012) 1662-1670.[15] J.I. Montgomery, M.F. Brown, U. Reilly, et al., Pyridone methylsulfone hydroxamate LpxC inhibitors for the treatment of serious gram-negative infections, J. Med. Chem. 55 (2012) 1662-1670.

    16. [16] U. Möllmann, L. Heinisch, A. Bauernfeind, T. Kö hler, D. Ankel-Fuchs, Siderophores as drug delivery agents: application of the "Trojan Horse" strategy, Biometals 22 (2009) 615-624.[16] U. Möllmann, L. Heinisch, A. Bauernfeind, T. Kö hler, D. Ankel-Fuchs, Siderophores as drug delivery agents: application of the "Trojan Horse" strategy, Biometals 22 (2009) 615-624.

    17. [17] M.G.P. Page, C. Dantier, E. Desarbre, In vitro properties of BAL30072, a novel siderophore sulfactamwith activity against multiresistant Gram-negative bacilli, Antimicrob. Agents Chemother. 54 (2010) 2291-2302.[17] M.G.P. Page, C. Dantier, E. Desarbre, In vitro properties of BAL30072, a novel siderophore sulfactamwith activity against multiresistant Gram-negative bacilli, Antimicrob. Agents Chemother. 54 (2010) 2291-2302.

    18. [18] M.E. Flanagan, S.J. Brickner, M. Lall, et al., Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols, ACS Med. Chem. Lett. 2 (2011) 385-390.[18] M.E. Flanagan, S.J. Brickner, M. Lall, et al., Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols, ACS Med. Chem. Lett. 2 (2011) 385-390.

    19. [19] X.F. Liang, C.J. Lee, J.S. Zhao, E.J. Toone, P. Zhou, Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors, J. Med. Chem. 56 (2013) 6954-6966.[19] X.F. Liang, C.J. Lee, J.S. Zhao, E.J. Toone, P. Zhou, Synthesis, structure, and antibiotic activity of aryl-substituted LpxC inhibitors, J. Med. Chem. 56 (2013) 6954-6966.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1223
  • HTML全文浏览量:  32
文章相关
  • 发布日期:  2015-03-28
  • 收稿日期:  2014-12-18
  • 网络出版日期:  2015-03-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章