PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy

Xiao-Zhen Cui Zhi-Guo Zhou Yan Yang Jie Wei Jun Wang Ming-Wei Wang Hong Yang Ying-Jian Zhang Shi-Ping Yang

Citation:  Xiao-Zhen Cui, Zhi-Guo Zhou, Yan Yang, Jie Wei, Jun Wang, Ming-Wei Wang, Hong Yang, Ying-Jian Zhang, Shi-Ping Yang. PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy[J]. Chinese Chemical Letters, 2015, 26(6): 749-754. doi: 10.1016/j.cclet.2015.03.034 shu

PEGylated WS2 nanosheets for X-ray computed tomography imaging and photothermal therapy

    通讯作者: Zhi-Guo Zhou,
    Ming-Wei Wang,
  • 基金项目:

    Innovative Research Team in University (No. IRT1269) (No. IRT1269)

    Shanghai Pujiang Program (No. 13PJ1406600) (No. 13PJ1406600)

    Shanghai Municipal Education Commission (No. 13ZZ110) (No. 13ZZ110)

    International Joint Laboratory on Resource Chemistry (IJLRC). (IJLRC)

摘要: WS2 nanosheets were prepared by the solvent-thermal method in the presence of n-butyl lithium, then the exfoliation under the condition of ultrasound. The formed WS2 nanosheets were conjugated with thiol-modified polyethylene glycol (PEG-SH) to improve the biocompatibility. The nanosheets (WS2-PEG) were able to inhibit the growth of a model HeLa cancer cell line in vitro due to the high photothermal conversion efficiency of 35% irradiated by an 808 nm laser (1 W/cm2). As a proof of concept, WS2-PEG nanosheets with the better X-ray attenuation property than the clinical computed tomography (CT) contrast agent (Iohexol) could be performed for CT imaging of the lymph vessel.

English

  • 
    1. [1] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.[1] A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109-162.

    2. [2] X. Huang, X. Qi, F. Boey, et al., Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.[2] X. Huang, X. Qi, F. Boey, et al., Graphene-based composites, Chem. Soc. Rev. 41 (2012) 666-686.

    3. [3] Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (2012) 2283-2307.[3] Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials, Chem. Soc. Rev. 41 (2012) 2283-2307.

    4. [4] K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453.[4] K.S. Novoselov, D. Jiang, F. Schedin, et al., Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451-10453.

    5. [5] B. Chamlagain, Q. Li, N.J. Ghimire, et al., Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate, ACS Nano 8 (2014) 5079-5088.[5] B. Chamlagain, Q. Li, N.J. Ghimire, et al., Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate, ACS Nano 8 (2014) 5079-5088.

    6. [6] H.S. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.[6] H.S. Matte, A. Gomathi, A.K. Manna, et al., MoS2 and WS2 analogues of graphene, Angew. Chem. Int. Ed. 49 (2010) 4059-4062.

    7. [7] H.-J. Chuang, X. Tan, N.J. Ghimire, et al., High mobility WSe2 p-and n-type fieldeffect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 14 (2014) 3594-3601.[7] H.-J. Chuang, X. Tan, N.J. Ghimire, et al., High mobility WSe2 p-and n-type fieldeffect transistors contacted by highly doped graphene for low-resistance contacts, Nano Lett. 14 (2014) 3594-3601.

    8. [8] M. Chhowalla, H.S. Shin, G. Eda, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275.[8] M. Chhowalla, H.S. Shin, G. Eda, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5 (2013) 263-275.

    9. [9] J. Chen, S.-L. Li, Q. Xu, et al., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem. Commun. (2002) 1722-1723.[9] J. Chen, S.-L. Li, Q. Xu, et al., Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation, Chem. Commun. (2002) 1722-1723.

    10. [10] M. Viršek, A. Jesih, I. Milošević, et al., Raman scattering of the MoS2 and WS2 single nanotubes, Surf. Sci. 601 (2007) 2868-2872.[10] M. Viršek, A. Jesih, I. Milošević, et al., Raman scattering of the MoS2 and WS2 single nanotubes, Surf. Sci. 601 (2007) 2868-2872.

    11. [11] X. Zong, H. Yan, G. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.[11] X. Zong, H. Yan, G. Wu, et al., Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176-7177.

    12. [12] N. Harada, S. Sato, N. Yokoyama, Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel, J. Appl. Phys. 115 (2014) 034505.[12] N. Harada, S. Sato, N. Yokoyama, Computational study on electrical properties of transition metal dichalcogenide field-effect transistors with strained channel, J. Appl. Phys. 115 (2014) 034505.

    13. [13] RadisavljevicB, RadenovicA, BrivioJ, et al., Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.[13] RadisavljevicB, RadenovicA, BrivioJ, et al., Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147-150.

    14. [14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699-712.[14] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7 (2012) 699-712.

    15. [15] X. Liu, G. Zhang, Q.-X. Pei, et al., Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103 (2013) 133113.[15] X. Liu, G. Zhang, Q.-X. Pei, et al., Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103 (2013) 133113.

    16. [16] N. Perea-López, A.L. Elías, A. Berkdemir, et al., Photosensor device based on few-layered WS2Films, Adv. Funct. Mater. 23 (2013) 5511-5517.[16] N. Perea-López, A.L. Elías, A. Berkdemir, et al., Photosensor device based on few-layered WS2Films, Adv. Funct. Mater. 23 (2013) 5511-5517.

    17. [17] G. von Maltzahn, J.H. Park, A. Agrawal, et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res. 69 (2009) 3892-3900.[17] G. von Maltzahn, J.H. Park, A. Agrawal, et al., Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res. 69 (2009) 3892-3900.

    18. [18] J. Shao, R.J. Griffin, E.I. Galanzha, et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci. Rep. 3 (2013) 1293.[18] J. Shao, R.J. Griffin, E.I. Galanzha, et al., Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics, Sci. Rep. 3 (2013) 1293.

    19. [19] S.R. Asemi, A. Farajpour, M. Borghei, et al., Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Lat. Am. J. Solids Struct. 11 (2014) 704-724.[19] S.R. Asemi, A. Farajpour, M. Borghei, et al., Thermal effects on the stability of circular graphene sheets via nonlocal continuum mechanics, Lat. Am. J. Solids Struct. 11 (2014) 704-724.

    20. [20] M.B.A. Kunze, D.W. Wright, N.D. Werbeck, et al., Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8, J. Am. Chem. Soc. 135 (2013) 17862-17868.[20] M.B.A. Kunze, D.W. Wright, N.D. Werbeck, et al., Loop interactions and dynamics tune the enzymatic activity of the human histone deacetylase 8, J. Am. Chem. Soc. 135 (2013) 17862-17868.

    21. [21] K. Yang, S. Zhang, G. Zhang, et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323.[21] K. Yang, S. Zhang, G. Zhang, et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (2010) 3318-3323.

    22. [22] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.[22] Q. Tian, M. Tang, Y. Sun, et al., Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells, Adv. Mater. 23 (2011) 3542-3547.

    23. [23] Z. Chen, Q. Wang, H. Wang, et al., Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater. 25 (2013) 2095-2100.[23] Z. Chen, Q. Wang, H. Wang, et al., Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo, Adv. Mater. 25 (2013) 2095-2100.

    24. [24] K. Yang, H. Xu, L. Cheng, et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater. 24 (2012) 5586-5592.[24] K. Yang, H. Xu, L. Cheng, et al., In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles, Adv. Mater. 24 (2012) 5586-5592.

    25. [25] Z. Zhou, B. Kong, C. Yu, et al., Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep. 4 (2014) 3653.[25] Z. Zhou, B. Kong, C. Yu, et al., Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, Sci. Rep. 4 (2014) 3653.

    26. [26] Z. Zhou, Y. Sun, J. Shen, et al., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.[26] Z. Zhou, Y. Sun, J. Shen, et al., Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, Biomaterials 35 (2014) 7470-7478.

    27. [27] J. Li, F. Jiang, B. Yang, et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy, Sci. Rep. 3 (2013) 1998.[27] J. Li, F. Jiang, B. Yang, et al., Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy, Sci. Rep. 3 (2013) 1998.

    28. [28] Y. Wang, K.C.L. Black, H. Luehmann, et al., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7 (2013) 2068-2077.[28] Y. Wang, K.C.L. Black, H. Luehmann, et al., Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment, ACS Nano 7 (2013) 2068-2077.

    29. [29] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4 (2010) 3689-3696.[29] D. Kim, Y.Y. Jeong, S. Jon, A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer, ACS Nano 4 (2010) 3689-3696.

    30. [30] S.-W. Chou, Y.-H. Shau, P.-C. Wu, et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270-13278.[30] S.-W. Chou, Y.-H. Shau, P.-C. Wu, et al., In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging, J. Am. Chem. Soc. 132 (2010) 13270-13278.

    31. [31] O. Rabin, J. Manuel Perez, J. Grimm, et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118-122.[31] O. Rabin, J. Manuel Perez, J. Grimm, et al., An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles, Nat. Mater. 5 (2006) 118-122.

    32. [32] Q. Xiao, W. Bu, Q. Ren, et al., Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging, Biomaterials 33 (2012) 7530-7539.[32] Q. Xiao, W. Bu, Q. Ren, et al., Radiopaque fluorescence-transparent TaOx decorated upconversion nanophosphors for in vivo CT/MR/UCL trimodal imaging, Biomaterials 33 (2012) 7530-7539.

    33. [33] Y. Liu, K. Ai, J. Liu, et al., A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging, Angew. Chem. Int. Ed. 51 (2012) 1437-1442.[33] Y. Liu, K. Ai, J. Liu, et al., A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging, Angew. Chem. Int. Ed. 51 (2012) 1437-1442.

    34. [34] Q. Tian, J. Hu, Y. Zhu, et al., Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc. 135 (2013) 8571-8577.[34] Q. Tian, J. Hu, Y. Zhu, et al., Sub-10 nm Fe3O4@Cu(2-x)S core-shell nanoparticles for dual-modal imaging and photothermal therapy, J. Am. Chem. Soc. 135 (2013) 8571-8577.

    35. [35] S.S. Chou, B. Kaehr, J. Kim, et al., Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed. 52 (2013) 4160-4164.[35] S.S. Chou, B. Kaehr, J. Kim, et al., Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed. 52 (2013) 4160-4164.

    36. [36] J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities, J. Phys. Chem. Lett. 5 (2014) 976-985.[36] J.A. Faucheaux, A.L.D. Stanton, P.K. Jain, Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities, J. Phys. Chem. Lett. 5 (2014) 976-985.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1278
  • HTML全文浏览量:  28
文章相关
  • 发布日期:  2015-04-02
  • 收稿日期:  2014-12-31
  • 网络出版日期:  2015-02-28
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章