CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting

Yong Na Bo Hu Qiu-Ling Yang Jian Liu Li Zhou Rui-Qing Fan Yu-Lin Yang

Citation:  Yong Na, Bo Hu, Qiu-Ling Yang, Jian Liu, Li Zhou, Rui-Qing Fan, Yu-Lin Yang. CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting[J]. Chinese Chemical Letters, 2015, 26(1): 141-144. doi: 10.1016/j.cclet.2014.09.011 shu

CdS quantum dot sensitized p-type NiO as photocathode with integrated cobaloxime in photoelectrochemical cell for water splitting

    通讯作者: Yong Na,
    Yu-Lin Yang,
  • 基金项目:

    This work is supported by the Fundamental Research Funds for the Central Universities (No. HIT. IBRSEM. A. 201409) (No. HIT. IBRSEM. A. 201409)

    the Program for Innovation Research of Science in Harbin Institute of Technology (PIRS of HIT No. A201418, A201416) (PIRS of HIT No. A201418, A201416)

    the National key Basic Research Program of China (973 Program, No. 2013CB632900). (973 Program, No. 2013CB632900)

摘要: CdS sensitized NiO electrode was used as the photoactive cathode in a photoelectrochemical cell for water splitting, avoiding the use of a sacrificial electron donor. Photocurrent increment under visible light irradiation was observed after integration of [Co(dmgH)2(4-Me-py)Cl] (1) to the photocathode, suggesting 1 could accept electrons from photoexcited CdS for water reduction and NiO could move the holes in the valence band of CdS to anode for water oxidation.

English

  • 
    1. [1] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15729-15735.[1] N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 15729-15735.

    2. [2] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185-196.[2] J. Barber, Photosynthetic energy conversion: natural and artificial, Chem. Soc. Rev. 38 (2009) 185-196.

    3. [3] T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.[3] T.R. Cook, D.K. Dogutan, S.Y. Reece, et al., Solar energy supply and storage for the legacy and nonlegacy worlds, Chem. Rev. 110 (2010) 6474-6502.

    4. [4] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4270.[4] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104 (2004) 4245-4270.

    5. [5] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103-106.[5] H.S. Zhai, L. Cao, X.H. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction, Chin. Chem. Lett. 24 (2013) 103-106.

    6. [6] M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev. 110 (2010) 6446-6473.[6] M.G. Walter, E.L. Warren, J.R. McKone, et al., Solar water splitting cells, Chem. Rev. 110 (2010) 6446-6473.

    7. [7] M. Wang, L. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, ChemSusChem 3 (2010) 551-554.[7] M. Wang, L. Sun, Hydrogen production by noble-metal-free molecular catalysts and related nanomaterials, ChemSusChem 3 (2010) 551-554.

    8. [8] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt, Angew. Chem. Int. Ed. 50 (2011) 7238-7266.[8] V. Artero, M. Chavarot-Kerlidou, M. Fontecave, Splitting water with cobalt, Angew. Chem. Int. Ed. 50 (2011) 7238-7266.

    9. [9] F.Y. Wen, J.H. Yang, X. Zong, et al., Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts, J. Catal. 218 (2011) 318-324.[9] F.Y. Wen, J.H. Yang, X. Zong, et al., Photocatalytic H2 production on hybrid catalyst system composed of inorganic semiconductor and cobaloximes catalysts, J. Catal. 218 (2011) 318-324.

    10. [10] J. Huang, K.L. Mulfort, P. Du, L.X. Chen, Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production, J. Am. Chem. Soc. 134 (2012) 16472-16475.[10] J. Huang, K.L. Mulfort, P. Du, L.X. Chen, Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production, J. Am. Chem. Soc. 134 (2012) 16472-16475.

    11. [11] P.D. Tran, V. Artero, M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci. 3 (2010) 727-747.[11] P.D. Tran, V. Artero, M. Fontecave, Water electrolysis and photoelectrolysis on electrodes engineered using biological and bio-inspired molecular systems, Energy Environ. Sci. 3 (2010) 727-747.

    12. [12] A. Krawicz, J. Yang, E. Anzenberg, et al., Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor, J. Am. Chem. Soc. 135 (2013) 11861-11868.[12] A. Krawicz, J. Yang, E. Anzenberg, et al., Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor, J. Am. Chem. Soc. 135 (2013) 11861-11868.

    13. [13] L. Li, L. Duan, F. Wen, et al., Visible light driven hydrogen production from a photoactive cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun. 48 (2012) 988-990.[13] L. Li, L. Duan, F. Wen, et al., Visible light driven hydrogen production from a photoactive cathode based on a molecular catalyst and organic dye-sensitized p-type nanostructured NiO, Chem. Commun. 48 (2012) 988-990.

    14. [14] S.H. Kang, K. Zhu, N.R. Neale, A.J. Frank, Hole transport in sensitized CdS-NiO nanoparticle photocathodes, Chem. Commun. 47 (2011) 10419-10421.[14] S.H. Kang, K. Zhu, N.R. Neale, A.J. Frank, Hole transport in sensitized CdS-NiO nanoparticle photocathodes, Chem. Commun. 47 (2011) 10419-10421.

    15. [15] I. Barceló, E. Guillén, T. Lana-Villarreal, R. Gómez, Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots, J. Phys. Chem. C 117 (2013) 22509-22517.[15] I. Barceló, E. Guillén, T. Lana-Villarreal, R. Gómez, Preparation and characterization of nickel oxide photocathodes sensitized with colloidal cadmium selenide quantum dots, J. Phys. Chem. C 117 (2013) 22509-22517.

    16. [16] P. Du, J. Schneider, G. Luo, W.W. Brennessel, R. Eisenberg, Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts, Inorg. Chem. 48 (2009) 4952-4962.[16] P. Du, J. Schneider, G. Luo, W.W. Brennessel, R. Eisenberg, Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts, Inorg. Chem. 48 (2009) 4952-4962.

    17. [17] A. Krawicz, D. Cedeno, G.F. Moore, Energetics and efficiency analysis of cobaloxime- modified semiconductor under simulated air mass 1.5 illumination, Phys. Chem. Chem. Phys. 16 (2014) 15818-15824.[17] A. Krawicz, D. Cedeno, G.F. Moore, Energetics and efficiency analysis of cobaloxime- modified semiconductor under simulated air mass 1.5 illumination, Phys. Chem. Chem. Phys. 16 (2014) 15818-15824.

    18. [18] S. Powar, Q. Wu, M. Weidelener, et al., Improved photocurrents for p-type dyesensitized solar cells using nano-structured nickel(Ⅱ) oxide microballs, Energy Environ. Sci. 5 (2012) 8896-8900.[18] S. Powar, Q. Wu, M. Weidelener, et al., Improved photocurrents for p-type dyesensitized solar cells using nano-structured nickel(Ⅱ) oxide microballs, Energy Environ. Sci. 5 (2012) 8896-8900.

    19. [19] S. Powar, T. Daeneke, M.T. Ma, et al., Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(Ⅱ)/(Ⅲ) electrolytes, Angew. Chem. Int. Ed. 52 (2013) 602-605.[19] S. Powar, T. Daeneke, M.T. Ma, et al., Highly efficient p-type dye-sensitized solar cells based on tris(1,2-diaminoethane)cobalt(Ⅱ)/(Ⅲ) electrolytes, Angew. Chem. Int. Ed. 52 (2013) 602-605.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1167
  • HTML全文浏览量:  33
文章相关
  • 发布日期:  2014-09-16
  • 收稿日期:  2014-06-01
  • 网络出版日期:  2014-08-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章