BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties
English
BiOCl nanostructures with different morphologies: Tunable synthesis and visible-light-driven photocatalytic properties
-
Key words:
- BiOCl nanostructure
- / Crystal growth
- / Semiconductors
- / Photocatalytic property
-
-
-
[1] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.[1] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.
-
[2] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B 140 (2009) 319-336.[2] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview, Sens. Actuators B 140 (2009) 319-336.
-
[3] L. Peng, L. Hu, X. Fang, Energy harvesting for nanostructured self-powered photodetectors, Adv. Funct. Mater. 24 (2014) 2591-2610.[3] L. Peng, L. Hu, X. Fang, Energy harvesting for nanostructured self-powered photodetectors, Adv. Funct. Mater. 24 (2014) 2591-2610.
-
[4] S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity, Adv. Funct. Mater. 24 (2014) 3725-3733.[4] S. Han, L. Hu, N. Gao, A.A. Al-Ghamdi, X. Fang, Efficient self-assembly synthesis of uniform CdS spherical nanoparticles-Au nanoparticles hybrids with enhanced photoactivity, Adv. Funct. Mater. 24 (2014) 3725-3733.
-
[5] X.P. Lin, T. Huang, F.Q. Huang, W.D. Wang, J.L. Shi, Photocatalytic activity of a Bibased oxychloride Bi3O4Cl, J. Phys. Chem. B 110 (2006) 24629-24634.[5] X.P. Lin, T. Huang, F.Q. Huang, W.D. Wang, J.L. Shi, Photocatalytic activity of a Bibased oxychloride Bi3O4Cl, J. Phys. Chem. B 110 (2006) 24629-24634.
-
[6] J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX(X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.[6] J. Henle, P. Simon, A. Frenzel, S. Scholz, S. Kaskel, Nanosized BiOX(X = Cl, Br, I) particles synthesized in reverse microemulsions, Chem. Mater. 19 (2007) 366-373.
-
[7] M.A. Gondala, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J. 165 (2010) 250-257.[7] M.A. Gondala, X.F. Chang, Z.H. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution, Chem. Eng. J. 165 (2010) 250-257.
-
[8] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst original, Appl. Catal. B 68 (2006) 125-129.[8] K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst original, Appl. Catal. B 68 (2006) 125-129.
-
[9] L.Q. Ye, L. Zan, L.H. Tian, T.Y. Peng, J.J. Zhang, The {0 0 1} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun. 47 (2011) 6951-6953.[9] L.Q. Ye, L. Zan, L.H. Tian, T.Y. Peng, J.J. Zhang, The {0 0 1} facets-dependent high photoactivity of BiOCl nanosheets, Chem. Commun. 47 (2011) 6951-6953.
-
[10] J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc. 134 (2012) 4473-4476.[10] J. Jiang, K. Zhao, X.Y. Xiao, L.Z. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets, J. Am. Chem. Soc. 134 (2012) 4473-4476.
-
[11] S. Wu, C. Wang, Y. Cui, et al., Synthesis and photocatalytic properties of BiOCl nanowire arrays, Mater. Lett. 64 (2010) 115-118.[11] S. Wu, C. Wang, Y. Cui, et al., Synthesis and photocatalytic properties of BiOCl nanowire arrays, Mater. Lett. 64 (2010) 115-118.
-
[12] H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li, Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11 (2005) 6519-6524.[12] H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li, Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11 (2005) 6519-6524.
-
[13] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visiblelight- driven photocatalytic performance, RSC Adv. 1 (2011) 1542-1553.[13] J. Xiong, G. Cheng, G. Li, F. Qin, R. Chen, Well-crystallized square-like 2D BiOCl nanoplates: mannitol-assisted hydrothermal synthesis and improved visiblelight- driven photocatalytic performance, RSC Adv. 1 (2011) 1542-1553.
-
[14] B. Pare, B. Sarwan, S.B. Jonnalagadda, The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst, J. Mol. Struct. 1007 (2012) 196-202.[14] B. Pare, B. Sarwan, S.B. Jonnalagadda, The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst, J. Mol. Struct. 1007 (2012) 196-202.
-
[15] J. Song, C. Mao, H. Niu, Y. Shen, S. Zhang, Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngCommun 12 (2010) 3875- 3881.[15] J. Song, C. Mao, H. Niu, Y. Shen, S. Zhang, Hierarchical structured bismuth oxychlorides: self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties, CrystEngCommun 12 (2010) 3875- 3881.
-
[16] D.H. Wang, G.Q. Gao, Y.W. Zhang, et al., Nanosheet-constructed porous BiOCl with dominant {0 0 1} facets for superior photosensitized degradation, Nanoscale 4 (2012) 7780-7785.[16] D.H. Wang, G.Q. Gao, Y.W. Zhang, et al., Nanosheet-constructed porous BiOCl with dominant {0 0 1} facets for superior photosensitized degradation, Nanoscale 4 (2012) 7780-7785.
-
[17] X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C 112 (2008) 747-753.[17] X. Zhang, Z. Ai, F. Jia, L. Zhang, Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres, J. Phys. Chem. C 112 (2008) 747-753.
-
[18] J. Xiong, G. Cheng, F. Qin, et al., Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation, Chem. Eng. J. 220 (2013) 228-236.[18] J. Xiong, G. Cheng, F. Qin, et al., Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation, Chem. Eng. J. 220 (2013) 228-236.
-
[19] Z.K. Cui, L.W. Mi, D.W. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd. 549 (2013) 70-76.[19] Z.K. Cui, L.W. Mi, D.W. Zeng, Oriented attachment growth of BiOCl nanosheets with exposed {1 1 0} facets and photocatalytic activity of the hierarchical nanostructures, J. Alloys Compd. 549 (2013) 70-76.
-
[20] L.P. Zhu, G.H. Liao, N.C. Bing, et al., Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization, CrystEngComm 12 (2010) 3791-3796.[20] L.P. Zhu, G.H. Liao, N.C. Bing, et al., Self-assembled 3D BiOCl hierarchitectures: tunable synthesis and characterization, CrystEngComm 12 (2010) 3791-3796.
-
[21] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEng- Comm 11 (2009) 1857-1862.[21] Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties, CrystEng- Comm 11 (2009) 1857-1862.
-
[22] J. Xiong, Z. Jiao, G. Lu, et al., Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties, Chem. Eur. J. 19 (2013) 9472-9475.[22] J. Xiong, Z. Jiao, G. Lu, et al., Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties, Chem. Eur. J. 19 (2013) 9472-9475.
-
[23] J. Liu, J. Hu, L. Ruan, Y. Wu, Facile and environment friendly synthesis of hierarchical BiOCl flowery microspheres with remarkable photocatalytic properties, Chin. Sci. Bull. 59 (2014) 802-809.[23] J. Liu, J. Hu, L. Ruan, Y. Wu, Facile and environment friendly synthesis of hierarchical BiOCl flowery microspheres with remarkable photocatalytic properties, Chin. Sci. Bull. 59 (2014) 802-809.
-
[24] W.Q. Fang, J.Z. Zhou, J. Liu, et al., Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated with {0 0 1} facets, Chem. Eur. J. 17 (2011) 1423-1427.[24] W.Q. Fang, J.Z. Zhou, J. Liu, et al., Hierarchical structures of single-crystalline anatase TiO2 nanosheets dominated with {0 0 1} facets, Chem. Eur. J. 17 (2011) 1423-1427.
-
[25] Z.H. Zhang, S.H. Liu, S.Y. Chow, M.Y. Han, Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas, Langmuir 22 (2006) 6335-6340.[25] Z.H. Zhang, S.H. Liu, S.Y. Chow, M.Y. Han, Modulation of the morphology of ZnO nanostructures via aminolytic reaction: from nanorods to nanosquamas, Langmuir 22 (2006) 6335-6340.
-
[26] H. Wang, B. Wang, S. Ma, Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells, Chin. Chem. Lett. 24 (2013) 260-263.[26] H. Wang, B. Wang, S. Ma, Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells, Chin. Chem. Lett. 24 (2013) 260-263.
-
[27] Z.P. Li, Y.Q. Wen, J.P. Shang, et al., Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity, Chin. Chem. Lett. 25 (2014) 287-291.[27] Z.P. Li, Y.Q. Wen, J.P. Shang, et al., Magnetically recoverable Cu2O/Fe3O4 composite photocatalysts: fabrication and photocatalytic activity, Chin. Chem. Lett. 25 (2014) 287-291.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1098
- HTML全文浏览量: 13

下载: