A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging

Xiao-Hang Yang Shu Li Zhi-Shu Tang Xi-Di Yu Tin Huang Yong Gao

Citation:  Xiao-Hang Yang, Shu Li, Zhi-Shu Tang, Xi-Di Yu, Tin Huang, Yong Gao. A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging[J]. Chinese Chemical Letters, 2015, 26(1): 129-132. doi: 10.1016/j.cclet.2014.09.025 shu

A simple, water-soluble, Fe3+-selective fluorescent probe and its application in bioimaging

    通讯作者: Yong Gao,
  • 基金项目:

    This work was supported by Natural Science Foundationof Fujian Province (No. 2013H0019) (No. 2013H0019)

    the Science Foundation of Education Department of Fujian Province (No. JA11064) (No. JA11064)

    the Open Foundation of the State Key Laboratory of Fine Chemicals (No. KF1307) (No. KF1307)

摘要: A simple, water-soluble, Fe3+-selective fluorescent probe, derived from rhodamine B, was synthesized and characterized. The probe exhibits a fluorescence response toward Fe3+ with acceptable sensitivity and selectivity and even facilitates visual or naked-eye detection of Fe3+. The experiment results show that the response of the probe to Fe3+ is pH-independent over a wide range of 4.0-10.0. In addition, fluorescence microscopic imaging experiments have proven that the probe is cell permeable and can be used for monitoring intracellular Fe3+ in living cells.

English

  • 
    1. [1] (a) B. William, S. Maya, Intracellular labile iron, Int. J. Biochem. Cell Biol. 40 (2008) 350-354;[1] (a) B. William, S. Maya, Intracellular labile iron, Int. J. Biochem. Cell Biol. 40 (2008) 350-354;

    2. [2]

      (b) C.D. Kaplan, J. Kaplan, Iron acquisition and transcriptional regulation, Chem. Rev. 109 (2009) 4536-4552.(b) C.D. Kaplan, J. Kaplan, Iron acquisition and transcriptional regulation, Chem. Rev. 109 (2009) 4536-4552.

    3. [2] (a) B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999, pp. 55-56;[2] (a) B. Halliwell, J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, 1999, pp. 55-56;

    4. [4]

      (b) P. Frank, P. Sandra, E. Dogruöz, et al., Reduction of Fe(Ⅲ) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro, J. Biol. Chem. 278 (2003) 46403-46413;(b) P. Frank, P. Sandra, E. Dogruöz, et al., Reduction of Fe(Ⅲ) ions complexed to physiological ligands by lipoyl dehydrogenase and other flavoenzymes in vitro, J. Biol. Chem. 278 (2003) 46403-46413;

    5. [5]

      (c) C.H. Robert, X.L. Kong, Iron speciation in the cytosol: an overview, Dalton Trans. 42 (2013) 3220-3229;(c) C.H. Robert, X.L. Kong, Iron speciation in the cytosol: an overview, Dalton Trans. 42 (2013) 3220-3229;

    6. [6]

      (d) P. Wang, T.A. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.(d) P. Wang, T.A. Okamura, H.P. Zhou, W.Y. Sun, Y.P. Tian, Metal complex with terpyrindine derivative ligand as highly selective colorimetric sensor for iron(Ⅲ), Chin. Chem. Lett. 24 (2013) 20-22.

    7. [3] (a) K.M. Dean, Y. Qin, A.E. Palmer, Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes, Biochim. Biophys. Acta 1823 (2012) 1406-1415;[3] (a) K.M. Dean, Y. Qin, A.E. Palmer, Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes, Biochim. Biophys. Acta 1823 (2012) 1406-1415;

    8. [8]

      (b) C. Giselle, M.M. Tania, R.B. Fernanda, Analytical methods for copper, zinc and iron quantification in mammalian cells, Metallomics 5 (2013) 1336-1345.(b) C. Giselle, M.M. Tania, R.B. Fernanda, Analytical methods for copper, zinc and iron quantification in mammalian cells, Metallomics 5 (2013) 1336-1345.

    9. [4] (a) H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472;[4] (a) H.N. Kim, M.H. Lee, H.J. Kim, J.S. Kim, J. Yoon, A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions, Chem. Soc. Rev. 37 (2008) 1465-1472;

    10. [10]

      (b) X.Q. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.(b) X.Q. Chen, T.H. Pradhan, F. Wang, J.S. Kim, J. Yoon, Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives, Chem. Rev. 112 (2012) 1910-1956.

    11. [5] (a) X. Zhang, Y. Shiraishi, T. Hirai, A new rhodamine derivative bearing an azacrown ether as a selective fluorescent chemosensor for Fe3+ and Hg2+, Tetrahedron Lett. 49 (2008) 4178-4181;[5] (a) X. Zhang, Y. Shiraishi, T. Hirai, A new rhodamine derivative bearing an azacrown ether as a selective fluorescent chemosensor for Fe3+ and Hg2+, Tetrahedron Lett. 49 (2008) 4178-4181;

    12. [12]

      (b) L.Z. Zhang, J.L. Fan, X.J. Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+, Spectrochim. Acta Part A 73 (2009) 398-402;(b) L.Z. Zhang, J.L. Fan, X.J. Peng, X-ray crystallographic and photophysical properties of rhodamine-based chemosensor for Fe3+, Spectrochim. Acta Part A 73 (2009) 398-402;

    13. [13]

      (c) T.L. Gao, K.M. Lee, J.Y. Heo, S.I. Yang, A new ferric ion-selective fluorescent chemosensor with a wide dynamic range, Bull. Korean Chem. Soc. 31 (2010) 2100-2102;(c) T.L. Gao, K.M. Lee, J.Y. Heo, S.I. Yang, A new ferric ion-selective fluorescent chemosensor with a wide dynamic range, Bull. Korean Chem. Soc. 31 (2010) 2100-2102;

    14. [14]

      (d) J.B. Li, Q.H. Hu, X.L. Yu, et al., A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+, J. Fluoresc. 21 (2011) 2005- 2013;(d) J.B. Li, Q.H. Hu, X.L. Yu, et al., A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+, J. Fluoresc. 21 (2011) 2005- 2013;

    15. [15]

      (e) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sens. Actuators B 157 (2011) 675-680;(e) W.T. Yin, H. Cui, Z. Yang, et al., Facile synthesis and characterization of rhodamine-based colorimetric and "off-on" fluorescent chemosensor for Fe3+, Sens. Actuators B 157 (2011) 675-680;

    16. [16]

      (f) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric"off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343;(f) M.Y. She, Z. Yang, B. Yin, et al., A novel rhodamine-based fluorescent and colorimetric"off-on" chemosensor and investigation of the recognizing behavior towards Fe3+, Dyes Pigments 92 (2012) 1337-1343;

    17. [17]

      (g) Z. Aydin, Y.B. Wei, M.L. Guo, A highly selective rhodamine based turn-on optical sensor for Fe3+, Inorg. Chem. Commun. 20 (2012) 93-96.(g) Z. Aydin, Y.B. Wei, M.L. Guo, A highly selective rhodamine based turn-on optical sensor for Fe3+, Inorg. Chem. Commun. 20 (2012) 93-96.

    18. [6] (a) J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535;[6] (a) J.J. Du, M.M. Hu, J.L. Fan, X.J. Peng, Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media, Chem. Soc. Rev. 41 (2012) 4511-4535;

    19. [19]

      (b) M.H. Lynne, J.F. Katherine, Probing oxidative stress: small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256 (2012) 2333-2356;(b) M.H. Lynne, J.F. Katherine, Probing oxidative stress: small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256 (2012) 2333-2356;

    20. [20]

      (c) X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.(c) X.H. Li, X.H. Gao, W. Shi, H.M. Ma, Design strategies for water-soluble small molecular chromogenic and fluorogenic probes, Chem. Rev. 114 (2014) 590-659.

    21. [7] (a) S.R. Liu, S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe(Ⅲ) ions and its application to living cell imaging, Sens. Actuators B 171-172 (2012) 1110-1116;[7] (a) S.R. Liu, S.P. Wu, New water-soluble highly selective fluorescent chemosensor for Fe(Ⅲ) ions and its application to living cell imaging, Sens. Actuators B 171-172 (2012) 1110-1116;

    22. [22]

      (b) H.J. Sheng, X.M. Meng, W.P. Ye, et al., A water-soluble fluorescent probe for Fe(Ⅲ): improved selectivity over Cr(Ⅲ), Sens. Actuators B 195 (2014) 534-539;(b) H.J. Sheng, X.M. Meng, W.P. Ye, et al., A water-soluble fluorescent probe for Fe(Ⅲ): improved selectivity over Cr(Ⅲ), Sens. Actuators B 195 (2014) 534-539;

    23. [23]

      (c) C.Y. Li, C.X. Zou, Y.F. Li, J.L. Tang, C. Weng, A new rhodamine-based fluorescent chemosensor for Fe3+ and its application in living cell imaging, Dyes Pigments 104 (2014) 110-115;(c) C.Y. Li, C.X. Zou, Y.F. Li, J.L. Tang, C. Weng, A new rhodamine-based fluorescent chemosensor for Fe3+ and its application in living cell imaging, Dyes Pigments 104 (2014) 110-115;

    24. [24]

      (d) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147;(d) Z. Yang, M.Y. She, B. Yin, et al., Three rhodamine-based "off-on" chemosensors with high selectivity and sensitivity for Fe3+ imaging in living cells, J. Org. Chem. 77 (2012) 1143-1147;

    25. [25]

      (f) M.P. Yang, C.C. Xu, S.N. Li, et al., Three selective and sensitive "off-on" probes based on rhodamine for Fe3+ imaging in living cells, RSC Adv. 4 (2014) 14248- 14253.(f) M.P. Yang, C.C. Xu, S.N. Li, et al., Three selective and sensitive "off-on" probes based on rhodamine for Fe3+ imaging in living cells, RSC Adv. 4 (2014) 14248- 14253.

    26. [8] K.N. Raymond, Biomimetic metal encapsulation, Coord. Chem. Rev. 105 (1990) 135-155.[8] K.N. Raymond, Biomimetic metal encapsulation, Coord. Chem. Rev. 105 (1990) 135-155.

    27. [9] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(Ⅲ) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195-7227.[9] S.K. Sahoo, D. Sharma, R.K. Bera, G. Crisponi, J.F. Callan, Iron(Ⅲ) selective molecular and supramolecular fluorescent probes, Chem. Soc. Rev. 41 (2012) 7195-7227.

    28. [10] (a) S. Bae, J. Tae, Rhodamine-hydroxamate-based fluorescent chemosensor for Fe, Tetrahedron Lett. 48 (2007) 5389-5392;[10] (a) S. Bae, J. Tae, Rhodamine-hydroxamate-based fluorescent chemosensor for Fe, Tetrahedron Lett. 48 (2007) 5389-5392;

    29. [29]

      (b) K.S. Moon, Y.K. Yang, S. Ji, J. Tae, Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media, Tetrahedron Lett. 51 (2010) 3290-3293.(b) K.S. Moon, Y.K. Yang, S. Ji, J. Tae, Aminoxy-linked rhodamine hydroxamate as fluorescent chemosensor for Fe3+ in aqueous media, Tetrahedron Lett. 51 (2010) 3290-3293.

    30. [11] (a) Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (2007) 3921-3924;[11] (a) Y. Shiraishi, R. Miyamoto, X. Zhang, T. Hirai, Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range, Org. Lett. 9 (2007) 3921-3924;

    31. [31]

      (b) M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett. 10 (2008) 213-216.(b) M.H. Lee, H.J. Kim, S. Yoon, N. Park, J.S. Kim, Metal ion induced FRET off-on in tren/dansyl-appended rhodamine, Org. Lett. 10 (2008) 213-216.

    32. [12] J.D. Chartres, M. Busby, M.J. Riley, J.J. Davis, P.V. Bernhardt, A turn-on fluorescent iron complex and its cellular uptake, Inorg. Chem. 50 (2011) 9178-9183.[12] J.D. Chartres, M. Busby, M.J. Riley, J.J. Davis, P.V. Bernhardt, A turn-on fluorescent iron complex and its cellular uptake, Inorg. Chem. 50 (2011) 9178-9183.

    33. [13] A.K. Singh, V.K. Gupta, B. Gupta, Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta 585 (2007) 171-178.[13] A.K. Singh, V.K. Gupta, B. Gupta, Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores, Anal. Chim. Acta 585 (2007) 171-178.

    34. [14] R. Patil, A. Moirangthem, R. Butcher, et al., Al3+ selective colorimetric and fluorescent red shifting chemosensor: application in living cell imaging, Dalton Trans. 43 (2014) 2895-2899.[14] R. Patil, A. Moirangthem, R. Butcher, et al., Al3+ selective colorimetric and fluorescent red shifting chemosensor: application in living cell imaging, Dalton Trans. 43 (2014) 2895-2899.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1169
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2014-09-28
  • 收稿日期:  2014-07-17
  • 网络出版日期:  2014-09-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章