CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents

Anna Pratima G. Nikalje Mangesh S. Ghodke Firoz A. Kalam Khan Jaiprakash N. Sangshetti

Citation:  Anna Pratima G. Nikalje, Mangesh S. Ghodke, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti. CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents[J]. Chinese Chemical Letters, 2015, 26(1): 108-112. doi: 10.1016/j.cclet.2014.10.020 shu

CAN catalyzed one-pot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents

    通讯作者: Anna Pratima G. Nikalje,
摘要: The present work describes a facile, one-pot three component synthesis of a series of 3-[(4,5-diphenyl-2-substituted aryl/heteryl)-1H-imidazol-1-yl]-1H-1,2,4-triazole-5-carboxylic acid derivatives M(1-15). Benzil, aromatic aldehydes and 3-amino-1,2,4-triazole-5-carboxylic acid was refluxed in ethanol using cerric ammonium nitrate (CAN) as a catalyst to give the title compounds in good yields. The compounds were evaluated for their in vitro antifungal and antibacterial activity. Compounds M1, M9, and M15 were found to be equipotent against Candida albicans when compared with fluconazole. Compounds M2, M5, and M14 showed higher activity against Streptococcus pneumoniae, Escherichia coli and Streptococcus pyogenes, respectively, compared with ampicillin. Docking study of the newly synthesized compounds was performed, and the results showed good bindingmode in the active sites of C. albicans enzyme cytochrome P450 lanosterol 14α-demethylase. The results of in vitro antifungal activity and docking study showed that synthesized compounds had potential antifungal activity and can be further optimized and developed as a lead compound.

English

  • 
    1. [1] A.A. Marzouk, V.M. Abbasov, A.H. Talybov, Synthesis of 2,4,5-triphenyl imidazole derivatives using diethyl ammonium hydrogen phosphate as green, fast and reusable catalyst, World J. Org. Chem. 1 (2013) 6-10.[1] A.A. Marzouk, V.M. Abbasov, A.H. Talybov, Synthesis of 2,4,5-triphenyl imidazole derivatives using diethyl ammonium hydrogen phosphate as green, fast and reusable catalyst, World J. Org. Chem. 1 (2013) 6-10.

    2. [2] P.P. Reddy, K. Mukkanti, K. Purandhar, ALPO4 mediated one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation, Rasayan J. Chem. 3 (2010) 335-340.[2] P.P. Reddy, K. Mukkanti, K. Purandhar, ALPO4 mediated one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under conventional heating and microwave irradiation, Rasayan J. Chem. 3 (2010) 335-340.

    3. [3] P.J. Das, J. Das, M. Ghosh, Solvent free one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective keggin heteropoly acid, Green Sustain. Chem. 3 (2013) 6-13.[3] P.J. Das, J. Das, M. Ghosh, Solvent free one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles catalyzed by secondary amine based ionic liquid and defective keggin heteropoly acid, Green Sustain. Chem. 3 (2013) 6-13.

    4. [4] J.H. Block, J.M. Beale (Eds.), Wilson and Griswold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Lippincott's Williams & Wilkins Publication, 2004, p. 240.[4] J.H. Block, J.M. Beale (Eds.), Wilson and Griswold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, 11th ed., Lippincott's Williams & Wilkins Publication, 2004, p. 240.

    5. [5] Y. Ozkay, I. Iskdag, Z. Incesu, G. Akalın, Synthesis of 2-substituted-N-[4-(1-methyl- 4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320-3328.[5] Y. Ozkay, I. Iskdag, Z. Incesu, G. Akalın, Synthesis of 2-substituted-N-[4-(1-methyl- 4,5-diphenyl-1H-imidazole-2-yl)phenyl]acetamide derivatives and evaluation of their anticancer activity, Eur. J. Med. Chem. 45 (2010) 3320-3328.

    6. [6] M.R. Wiley, L.C. Weir, S.L. Briggs, N.Y. Chirgadze, D. Clawson, The design of potent, selective, non-covalent, peptide thrombin inhibitors utilizing imidazole as a S1 binding element, Bioorg. Med. Chem. Lett. 9 (1999) 2767-2772.[6] M.R. Wiley, L.C. Weir, S.L. Briggs, N.Y. Chirgadze, D. Clawson, The design of potent, selective, non-covalent, peptide thrombin inhibitors utilizing imidazole as a S1 binding element, Bioorg. Med. Chem. Lett. 9 (1999) 2767-2772.

    7. [7] A. Puratchikodya, M. Doble, Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles, Bioorg. Med. Chem. 15 (2007) 1083-1090.[7] A. Puratchikodya, M. Doble, Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles, Bioorg. Med. Chem. 15 (2007) 1083-1090.

    8. [8] K.C.S. Achar, K.M. Hosamani, H.R. Seetharamareddy, In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives, Eur. J. Med. Chem. 45 (2010) 2048-2054.[8] K.C.S. Achar, K.M. Hosamani, H.R. Seetharamareddy, In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives, Eur. J. Med. Chem. 45 (2010) 2048-2054.

    9. [9] R.V. Shingalapur, K.M. Hosamani, R.S. Keri, Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles, Eur. J. Med. Chem. 44 (2009) 4244-4248.[9] R.V. Shingalapur, K.M. Hosamani, R.S. Keri, Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles, Eur. J. Med. Chem. 44 (2009) 4244-4248.

    10. [10] D. Sharma, B. Narasimhan, P. Kumar, et al., Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 2347-2353.[10] D. Sharma, B. Narasimhan, P. Kumar, et al., Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 2347-2353.

    11. [11] D. Zampieri, M.G. Mamolo, L. Vio, et al., Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method, Bioorg. Med. Chem. 15 (2007) 7444-7458.[11] D. Zampieri, M.G. Mamolo, L. Vio, et al., Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method, Bioorg. Med. Chem. 15 (2007) 7444-7458.

    12. [12] D. Olender, J. Zwawiak, V. Lukianchuk, et al., Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents, Eur. J. Med. Chem. 44 (2009) 645-652.[12] D. Olender, J. Zwawiak, V. Lukianchuk, et al., Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents, Eur. J. Med. Chem. 44 (2009) 645-652.

    13. [13] M. Tonelli, M. Simone, B. Tasso, F. Novelli, V. Boido, Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives, Bioorg. Med. Chem. 18 (2010) 2937-2953.[13] M. Tonelli, M. Simone, B. Tasso, F. Novelli, V. Boido, Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives, Bioorg. Med. Chem. 18 (2010) 2937-2953.

    14. [14] P. Gupta, S. Hameed, R. Jain, Ring-substituted imidazoles as a new class of antituberculosis agents, Eur. J. Med. Chem. 39 (2004) 805-814.[14] P. Gupta, S. Hameed, R. Jain, Ring-substituted imidazoles as a new class of antituberculosis agents, Eur. J. Med. Chem. 39 (2004) 805-814.

    15. [15] J. Pandey, T.K. Vinod, S.S. Verma, et al., Synthesis and antitubercular screening of imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 3350-3355.[15] J. Pandey, T.K. Vinod, S.S. Verma, et al., Synthesis and antitubercular screening of imidazole derivatives, Eur. J. Med. Chem. 44 (2009) 3350-3355.

    16. [16] G. Nurhan, S. Mevlut, C. Elif, S. Ali, D. Neslihan, Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives, Turk. J. Chem. 31 (2007) 335-348.[16] G. Nurhan, S. Mevlut, C. Elif, S. Ali, D. Neslihan, Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives, Turk. J. Chem. 31 (2007) 335-348.

    17. [17] S.F. Barbuceanu, L.A. Gabriela, S. Ioana, D. Constanatin, S. Radu, New S-alkylated 1,2,4-triazoles incorporating diphenyl sulfone moieties with potential antibacterial activity, J. Serb. Chem. Soc. 74 (2009) 1041-1049.[17] S.F. Barbuceanu, L.A. Gabriela, S. Ioana, D. Constanatin, S. Radu, New S-alkylated 1,2,4-triazoles incorporating diphenyl sulfone moieties with potential antibacterial activity, J. Serb. Chem. Soc. 74 (2009) 1041-1049.

    18. [18] M.R. Banday, A. Rauf, Substituted 1,2,4-triazoles and thiazolidinones from fatty acids spectral characterization and antimicrobial activity, Indian J. Chem. 48 (2009) 97-102.[18] M.R. Banday, A. Rauf, Substituted 1,2,4-triazoles and thiazolidinones from fatty acids spectral characterization and antimicrobial activity, Indian J. Chem. 48 (2009) 97-102.

    19. [19] J.N. Sangshetti, D.B. Shinde, A.P. Sarkate, Synthesis, antifungal activity and docking study of some new 1,2,4-triazole analogs, Chem. Biol. Drug Des. 78 (2011) 800-809.[19] J.N. Sangshetti, D.B. Shinde, A.P. Sarkate, Synthesis, antifungal activity and docking study of some new 1,2,4-triazole analogs, Chem. Biol. Drug Des. 78 (2011) 800-809.

    20. [20] R. Tang, L. Jin, C. Mou, et al., Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety, Chem. Cent. J. (2013) 7-30.[20] R. Tang, L. Jin, C. Mou, et al., Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety, Chem. Cent. J. (2013) 7-30.

    21. [21] X. Chai, J. Zhang, Y. Cao, et al., Design, synthesis and molecular docking studies of novel triazole as antifungal agent, Eur. J. Med. Chem. 46 (2011) 3167-3176.[21] X. Chai, J. Zhang, Y. Cao, et al., Design, synthesis and molecular docking studies of novel triazole as antifungal agent, Eur. J. Med. Chem. 46 (2011) 3167-3176.

    22. [22] Y. Jiang, J. Zhang, Y. Cao, et al., Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 4471-4475.[22] Y. Jiang, J. Zhang, Y. Cao, et al., Synthesis, in vitro evaluation and molecular docking studies of new triazole derivatives as antifungal agents, Bioorg. Med. Chem. Lett. 21 (2011) 4471-4475.

    23. [23] K.S. Bhat, Synthesis and antitumor activity studies of some new fused 1,2,4- triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety, Eur. J. Med. Chem. 44 (2009) 5066-5070.[23] K.S. Bhat, Synthesis and antitumor activity studies of some new fused 1,2,4- triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety, Eur. J. Med. Chem. 44 (2009) 5066-5070.

    24. [24] Y.A. Al-Soud, M.N. Al-Dweri, N.A. Al-Masoudi, Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives, Farmaco 59 (2004) 775-783.[24] Y.A. Al-Soud, M.N. Al-Dweri, N.A. Al-Masoudi, Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives, Farmaco 59 (2004) 775-783.

    25. [25] P. Valentina, K. Ilango, M. Deepthi, et al., Antioxidant activity of some substituted 1, 2, 4-triazo-5-thione Schiff base, J. Pharm. Sci. Res. 2 (2009) 74-77.[25] P. Valentina, K. Ilango, M. Deepthi, et al., Antioxidant activity of some substituted 1, 2, 4-triazo-5-thione Schiff base, J. Pharm. Sci. Res. 2 (2009) 74-77.

    26. [26] H. Yuksek, S. Kalayli, M.M.O. Mucuk, Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives, Ind. J. Chem. 45 (2006) 715-718.[26] H. Yuksek, S. Kalayli, M.M.O. Mucuk, Synthesis and antioxidant activities of some 4-benzylidenamino-4,5-dihydro-1H-1,2,4-triazol-5-one derivatives, Ind. J. Chem. 45 (2006) 715-718.

    27. [27] (a) A. Ning, Z. Wang, X. Xu, X. Li, One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxyl amines, aldehydes and 2-azido acrylates, ARKIVOC VI (2012) 222-228;[27] (a) A. Ning, Z. Wang, X. Xu, X. Li, One-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles by a tandem three-component reaction of hydroxyl amines, aldehydes and 2-azido acrylates, ARKIVOC VI (2012) 222-228;

    28. [28]

      (b) J.N. Sangshetti, N.D. Kokare, S.D. Kotharkar, D.B. Shinde, ZrOCl2·8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4- di(4,5-diphenylimidazol-yl)benzene, Chin. Chem. Lett. 19 (2008) 762-768.(b) J.N. Sangshetti, N.D. Kokare, S.D. Kotharkar, D.B. Shinde, ZrOCl2·8H2O catalyzed one-pot synthesis of 2,4,5-triaryl-1H-imidazoles and substituted 1,4- di(4,5-diphenylimidazol-yl)benzene, Chin. Chem. Lett. 19 (2008) 762-768.

    29. [28] R.K. Sharma, An efficient and one pot synthesis of poly substituted imidazoles catalyzed by BiCl3, Indian J. Chem. 51B (2012) 1489-1493.[28] R.K. Sharma, An efficient and one pot synthesis of poly substituted imidazoles catalyzed by BiCl3, Indian J. Chem. 51B (2012) 1489-1493.

    30. [29] A. Saberi, Synthesis of novel highly potent antibacterial and antifungal agents, Asian J. Med. Pharm. Res. 1 (2012) 01-05.[29] A. Saberi, Synthesis of novel highly potent antibacterial and antifungal agents, Asian J. Med. Pharm. Res. 1 (2012) 01-05.

    31. [30] (a) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkar, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;[30] (a) J.N. Sangshetti, N.D. Kokare, S.A. Kotharkar, D.B. Shinde, Ceric ammonium nitrate catalysed three component one-pot efficient synthesis of 2,4,5-triaryl-1Himidazoles, J. Chem. Sci. 120 (2008) 463-467;

    32. [32]

      (b) K.F. Shelke, S.B. Sapkal, M.S. Shingare, Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media, Chin. Chem. Lett. 20 (2009) 283-287.(b) K.F. Shelke, S.B. Sapkal, M.S. Shingare, Ultrasound-assisted one-pot synthesis of 2,4,5-triarylimidazole derivatives catalyzed by ceric (IV) ammonium nitrate in aqueous media, Chin. Chem. Lett. 20 (2009) 283-287.

    33. [31] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.[31] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.

    34. [32] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, et al., Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[ 3,2-c]pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038.[32] J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, et al., Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl)methyl)-4,5,6,7-tetrahydrothieno[ 3,2-c]pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038.

    35. [33] N. Strushkevich, S.A. Usanov, H.W. Park, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol. 397 (2010) 1067-1078.[33] N. Strushkevich, S.A. Usanov, H.W. Park, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol. 397 (2010) 1067-1078.

    36. [34] R.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.[34] R.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.

    37. [35] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd; www. Vlifesciences.com.[35] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd; www. Vlifesciences.com.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1235
  • HTML全文浏览量:  32
文章相关
  • 发布日期:  2014-11-01
  • 收稿日期:  2014-05-22
  • 网络出版日期:  2014-10-10
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章