Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method
English
Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method
-
Key words:
- Carbon nanotube films
- / Amorphous carbon
- / Electrodeposition
- / Field emission
-
-
-
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.
-
[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.[2] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature 363 (1993) 603-605.
-
[3] W. Lee, J. Lee, W. Yi, S.H. Han, Electric-field enhancement of photovoltaic devices: a third reason for the increase in the efficiency of photovoltaic devices by carbon nanotubes, Adv. Mater. 22 (2010) 2264-2267.[3] W. Lee, J. Lee, W. Yi, S.H. Han, Electric-field enhancement of photovoltaic devices: a third reason for the increase in the efficiency of photovoltaic devices by carbon nanotubes, Adv. Mater. 22 (2010) 2264-2267.
-
[4] S. Mallakpour, M. Hatami, A.A. Ensafi, H. Karimi-Maleh, Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation, Chin. Chem. Lett. 22 (2011) 185-188.[4] S. Mallakpour, M. Hatami, A.A. Ensafi, H. Karimi-Maleh, Synthesis and characterization of novel dopamine-derivative: application of modified multi-wall carbon nanotubes paste electrode for electrochemical investigation, Chin. Chem. Lett. 22 (2011) 185-188.
-
[5] K.S. Hazra, P. Rai, R. Mohapatra, et al., Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields, ACS Nano. 3 (2009) 2617-2622.[5] K.S. Hazra, P. Rai, R. Mohapatra, et al., Dramatic enhancement of the emission current density from carbon nanotube based nanosize tips with extremely low onset fields, ACS Nano. 3 (2009) 2617-2622.
-
[6] Y. Shiratori, S. Noda, Combinatorial evaluation for field emission properties of carbon nanotubes part Ⅱ: high growth rate system, J. Phys. Chem. C 114 (2010) 12938-12947.[6] Y. Shiratori, S. Noda, Combinatorial evaluation for field emission properties of carbon nanotubes part Ⅱ: high growth rate system, J. Phys. Chem. C 114 (2010) 12938-12947.
-
[7] X. Zhao, B.T.T. Chu, B. Ballesteros, et al., Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology 20 (2009) 065605.[7] X. Zhao, B.T.T. Chu, B. Ballesteros, et al., Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors, Nanotechnology 20 (2009) 065605.
-
[8] H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors, Nano Lett. 6 (2006) 1443-1448.[8] H. Ko, V.V. Tsukruk, Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors, Nano Lett. 6 (2006) 1443-1448.
-
[9] J. Cho, K. Konopka, K. Roz˙ niatowski, et al., Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon 47 (2009) 58-67.[9] J. Cho, K. Konopka, K. Roz˙ niatowski, et al., Characterisation of carbon nanotube films deposited by electrophoretic deposition, Carbon 47 (2009) 58-67.
-
[10] B. Gao, G.Z. Yue, Q. Qiu, et al., Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater. 13 (2001) 1770-1773.[10] B. Gao, G.Z. Yue, Q. Qiu, et al., Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition, Adv. Mater. 13 (2001) 1770-1773.
-
[11] J. Yang, S.L. Bai, R.X. Luo, et al., Electrodeposition of SnO2 nanocrystalline thin film using butyl-rhodamine B as a structure-directing agent, Chin. Chem. Lett. 21 (2010) 1505-1508.[11] J. Yang, S.L. Bai, R.X. Luo, et al., Electrodeposition of SnO2 nanocrystalline thin film using butyl-rhodamine B as a structure-directing agent, Chin. Chem. Lett. 21 (2010) 1505-1508.
-
[12] X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 2416-2424.[12] X.B. Yan, T. Xu, S.R. Yang, H.W. Liu, Q.J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 2416-2424.
-
[13] T. Sowers, B.L. Ward, S.L. English, R.J. Nemanicha, Measurement of field emission from nitrogen-doped diamond films, Diam. Relat. Mater. 9 (2000) 1569-1573.[13] T. Sowers, B.L. Ward, S.L. English, R.J. Nemanicha, Measurement of field emission from nitrogen-doped diamond films, Diam. Relat. Mater. 9 (2000) 1569-1573.
-
[14] J. Robertson, Mechanisms of electron field emission from diamond, diamondlike carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 17 (1999) 659-665.[14] J. Robertson, Mechanisms of electron field emission from diamond, diamondlike carbon, and nanostructured carbon, J. Vac. Sci. Technol. B 17 (1999) 659-665.
-
[15] Y. Umehara, S. Murai, Y. Koide, M. Murakami, Effects of sp2/sp3 bonding ratios on field emission properties of diamond-like carbon films grown by microwave plasma chemical vapor deposition, Diam. Relat. Mater. 11 (2002) 1429-1435.[15] Y. Umehara, S. Murai, Y. Koide, M. Murakami, Effects of sp2/sp3 bonding ratios on field emission properties of diamond-like carbon films grown by microwave plasma chemical vapor deposition, Diam. Relat. Mater. 11 (2002) 1429-1435.
-
[16] X.B. Yan, T. Xu, G. Chen, H.W. Liu, S.R. Yang, Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films, Carbon 42 (2004) 3103-3108.[16] X.B. Yan, T. Xu, G. Chen, H.W. Liu, S.R. Yang, Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films, Carbon 42 (2004) 3103-3108.
-
[17] X.B. Yan, T. Xu, S.S. Yue, et al., Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor, Diam. Relat. Mater. 14 (2005) 1342-1347.[17] X.B. Yan, T. Xu, S.S. Yue, et al., Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor, Diam. Relat. Mater. 14 (2005) 1342-1347.
-
[18] X.B. Yan, T. Xu, S. Xu, et al., Fabrication of carbon spheres on a-C:H films by heattreatment of a polymer precursor, Carbon 42 (2004) 2769-2771.[18] X.B. Yan, T. Xu, S. Xu, et al., Fabrication of carbon spheres on a-C:H films by heattreatment of a polymer precursor, Carbon 42 (2004) 2769-2771.
-
[19] S.W. Lei, Q.G. Guo, J.L. Shi, L. Liu, Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength, Carbon 48 (2010) 2644-2646.[19] S.W. Lei, Q.G. Guo, J.L. Shi, L. Liu, Preparation of phenolic-based carbon foam with controllable pore structure and high compressive strength, Carbon 48 (2010) 2644-2646.
-
[20] Y.F. Lu, S.M. Huang, C.H.A. Huan, X.F. Luo, Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane, Appl. Phys. A 68 (1999) 647-651.[20] Y.F. Lu, S.M. Huang, C.H.A. Huan, X.F. Luo, Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane, Appl. Phys. A 68 (1999) 647-651.
-
[21] S.H. Wan, H.Y. Hu, G. Chen, J.Y. Zhang, Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films, Electrochem. Commun. 10 (2008) 461-465.[21] S.H. Wan, H.Y. Hu, G. Chen, J.Y. Zhang, Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films, Electrochem. Commun. 10 (2008) 461-465.
-
[22] X.B. Yan, T. Xu, G. Chen, et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 907-913.[22] X.B. Yan, T. Xu, G. Chen, et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate, J. Phys. D: Appl. Phys. 37 (2004) 907-913.
-
[23] X.B. Yan, T. Xu, S. Xu, H.W. Liu, S.R. Yang, Field emission properties of polymerconverted carbon films by heat treatment, Solid State Commun. 133 (2005) 113-116.[23] X.B. Yan, T. Xu, S. Xu, H.W. Liu, S.R. Yang, Field emission properties of polymerconverted carbon films by heat treatment, Solid State Commun. 133 (2005) 113-116.
-
[24] X.B. Yan, T. Xu, G. Chen, S. Xu, S.R. Yang, Field-emission properties of diamondlike- carbon and nitrogen-doped diamond-like-carbon films prepared by electrochemical deposition, Appl. Phys. A: Mater. 81 (2005) 41-46.[24] X.B. Yan, T. Xu, G. Chen, S. Xu, S.R. Yang, Field-emission properties of diamondlike- carbon and nitrogen-doped diamond-like-carbon films prepared by electrochemical deposition, Appl. Phys. A: Mater. 81 (2005) 41-46.
-
[25] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Appl. Phys. Lett. 71 (1997) 1430-1432.[25] B.S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, Field emission from tetrahedral amorphous carbon, Appl. Phys. Lett. 71 (1997) 1430-1432.
-
[26] P.J. Zhang, J.T. Chen, R.F. Zhuo, et al., Carbon nanodot arrays grown as replicas of specially widened anodic aluminum oxide pore arrays, Appl. Surf. Sci. 255 (2009) 4456-4460.[26] P.J. Zhang, J.T. Chen, R.F. Zhuo, et al., Carbon nanodot arrays grown as replicas of specially widened anodic aluminum oxide pore arrays, Appl. Surf. Sci. 255 (2009) 4456-4460.
-
[27] L. Nilsson, O. Groening, C. Emmenegger, et al., Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett. 76 (2000) 2071-2073.[27] L. Nilsson, O. Groening, C. Emmenegger, et al., Scanning field emission from patterned carbon nanotube films, Appl. Phys. Lett. 76 (2000) 2071-2073.
-
[28] X.H. Zhang, L. Gong, K. Liu, et al., Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode, Adv. Mater. 22 (2010) 5292-5296.[28] X.H. Zhang, L. Gong, K. Liu, et al., Tungsten oxide nanowires grown on carbon cloth as a flexible cold cathode, Adv. Mater. 22 (2010) 5292-5296.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1302
- HTML全文浏览量: 16

下载: