A ladder conjugated polymer transducer for solid-contact Cu2+-selective electrodes

Shun-Yang Yu Yan-Cang Li Tao Xiong Qun Yuan Yong-Ming Liu Zhong-Yi Yuan Yi Xiao

Citation:  Shun-Yang Yu, Yan-Cang Li, Tao Xiong, Qun Yuan, Yong-Ming Liu, Zhong-Yi Yuan, Yi Xiao. A ladder conjugated polymer transducer for solid-contact Cu2+-selective electrodes[J]. Chinese Chemical Letters, 2014, 25(2): 364-366. shu

A ladder conjugated polymer transducer for solid-contact Cu2+-selective electrodes

    通讯作者: Shun-Yang Yu,
    Tao Xiong,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 21107134) (No. 21107134)

    Chinese Academy of Sciences (No. KZCX2-YW-JS208) (No. KZCX2-YW-JS208)

    ong Province (No. JQ200814)  (No. JQ200814)

摘要: In recent years, there has been a pronounced interest in solid-contact ion-selective electrodes (SC-ISEs), with emphasis on the use of conducting polymers as ion-to-electron transducer. In this work, a ladder conjugated polymer, thieno[3,2-b]thiophene (LCPT), was investigated in fabricating Cu2+-selective electrodes for the first time. The resulting electrodes were characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometry, and the water layer test. Results proved that the active LCPT facilitates the ion-to-electron transduction, and avoids the detrimental aqueous layer formed at the interface of SC-ISEs.

English

  • 
    1. [1] Y. Chen, R.N. Liang, W. Qin, Potentiometric sensor for sensitive and selective detection of heparin, Chin. Chem. Lett. 23 (2012) 233-236.[1] Y. Chen, R.N. Liang, W. Qin, Potentiometric sensor for sensitive and selective detection of heparin, Chin. Chem. Lett. 23 (2012) 233-236.

    2. [2] M.R. Pourjavid, T. Razavi, 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(Ⅲ) selective membrane sensor, Chin. Chem. Lett. 23 (2012) 343-346.[2] M.R. Pourjavid, T. Razavi, 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(Ⅲ) selective membrane sensor, Chin. Chem. Lett. 23 (2012) 343-346.

    3. [3] H.A. Zamani, Erbium(Ⅲ) PVC membrane sensor based on N-(benzyloxycarbonyloxy) succinimide as a new neutral ionophore, Chin. Chem. Lett. 22 (2011) 346-349.[3] H.A. Zamani, Erbium(Ⅲ) PVC membrane sensor based on N-(benzyloxycarbonyloxy) succinimide as a new neutral ionophore, Chin. Chem. Lett. 22 (2011) 346-349.

    4. [4] A. Michalska, All-solid-state ion selective and all-solid-state reference electrodes, Electroanalysis 24 (2012) 1253-1265.[4] A. Michalska, All-solid-state ion selective and all-solid-state reference electrodes, Electroanalysis 24 (2012) 1253-1265.

    5. [5] S.Y. Yu, L. Ju, F.H. Li, Y.M. Liu, J.F. Fang, A highly selective solid-contact electrode for Ag+ based on a monoazathiacrown ether ionophore, Chin. Chem. Lett. 23 (2012) 488-491.[5] S.Y. Yu, L. Ju, F.H. Li, Y.M. Liu, J.F. Fang, A highly selective solid-contact electrode for Ag+ based on a monoazathiacrown ether ionophore, Chin. Chem. Lett. 23 (2012) 488-491.

    6. [6] A. Benvidi, M.T. Ghanbarzadeh, M. Mazloum-Ardakani, R. Vafazadeh, Iodideselective polymeric membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) complex, Chin. Chem. Lett. 22 (2011) 1087- 1090.[6] A. Benvidi, M.T. Ghanbarzadeh, M. Mazloum-Ardakani, R. Vafazadeh, Iodideselective polymeric membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) complex, Chin. Chem. Lett. 22 (2011) 1087- 1090.

    7. [7] F.H. Li, J.J. Ye, M. Zhou, et al., All-solid-state potassium-selective electrode using graphene as the solid contact, Analyst 137 (2012) 618-623.[7] F.H. Li, J.J. Ye, M. Zhou, et al., All-solid-state potassium-selective electrode using graphene as the solid contact, Analyst 137 (2012) 618-623.

    8. [8] J.F. Ping, Y.X. Wang, J. Wu, Y.B. Ying, Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer, Electrochem. Commun. 13 (2011) 1529-1532.[8] J.F. Ping, Y.X. Wang, J. Wu, Y.B. Ying, Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer, Electrochem. Commun. 13 (2011) 1529-1532.

    9. [9] X.G. Li, H. Feng, M.R. Huang, G.L. Gu, M.G. Moloney, Ultrasensitive Pb(Ⅱ) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime, Anal. Chem. 84 (2012) 134-140.[9] X.G. Li, H. Feng, M.R. Huang, G.L. Gu, M.G. Moloney, Ultrasensitive Pb(Ⅱ) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime, Anal. Chem. 84 (2012) 134-140.

    10. [10] J. Bobacka, Conducting polymer-based solid-state ion-selective electrodes, Electroanalysis 18 (2006) 7-18.[10] J. Bobacka, Conducting polymer-based solid-state ion-selective electrodes, Electroanalysis 18 (2006) 7-18.

    11. [11] J. Sutter, E. Lindner, R. Gyurcsányi, E. Pretsch, A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit, Anal. Bioanal. Chem. 380 (2004) 7-14.[11] J. Sutter, E. Lindner, R. Gyurcsányi, E. Pretsch, A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit, Anal. Bioanal. Chem. 380 (2004) 7-14.

    12. [12] A. Cadogan, Z.Q. Gao, A. Lewenstam, A. Ivaska, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(viny1 chloride) membrane with a polypyrrole, Solid Contact Anal. Chem. 64 (1992) 2496-2501.[12] A. Cadogan, Z.Q. Gao, A. Lewenstam, A. Ivaska, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(viny1 chloride) membrane with a polypyrrole, Solid Contact Anal. Chem. 64 (1992) 2496-2501.

    13. [13] A. Kisiel, K. Kijewska, M. Mazur, K. Maksymiuk, A. Michalska, Polypyrrole microcapsules in all-solid-state reference electrodes, Electroanalysis 24 (2012) 165- 172.[13] A. Kisiel, K. Kijewska, M. Mazur, K. Maksymiuk, A. Michalska, Polypyrrole microcapsules in all-solid-state reference electrodes, Electroanalysis 24 (2012) 165- 172.

    14. [14] J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors, Chem. Rev. 108 (2008) 329-351.[14] J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors, Chem. Rev. 108 (2008) 329-351.

    15. [15] T. Lindfors, J. Szücs, F. Sundfors, R. Gyurcsányi, Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements, Anal. Chem. 82 (2010) 9425-9432.[15] T. Lindfors, J. Szücs, F. Sundfors, R. Gyurcsányi, Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements, Anal. Chem. 82 (2010) 9425-9432.

    16. [16] J. Bobacka, M. McCarrick, A. Lewenstam, A. Ivaska, All-solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid contact, Analyst 119 (1994) 1985-1991.[16] J. Bobacka, M. McCarrick, A. Lewenstam, A. Ivaska, All-solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid contact, Analyst 119 (1994) 1985-1991.

    17. [17] K. Chumbimuni-Torres, N. Rubinova, A. Radu, L. Kubota, E. Bakker, Solid contact potentiometric sensors for trace level measurements, Anal. Chem. 78 (2006) 1318-1322.[17] K. Chumbimuni-Torres, N. Rubinova, A. Radu, L. Kubota, E. Bakker, Solid contact potentiometric sensors for trace level measurements, Anal. Chem. 78 (2006) 1318-1322.

    18. [18] J.P. Veder, K. Patel, G. Clarke, et al., Synchrotron radiation fourier transforminfrared microspectroscopy study of undesirable water inclusions in solid-contact polymeric ion-selective electrodes, Anal. Chem. 82 (2010) 6203-6207.[18] J.P. Veder, K. Patel, G. Clarke, et al., Synchrotron radiation fourier transforminfrared microspectroscopy study of undesirable water inclusions in solid-contact polymeric ion-selective electrodes, Anal. Chem. 82 (2010) 6203-6207.

    19. [19] Z.Y. Yuan, Y. Xiao, Y. Yang, T. Xiong, Soluble ladder conjugated polymer composed of perylenediimides and thieno[3,2-b]thiophene (LCPT): a highly efficient synthesis via photocyclization with the sunlight, Macromolecules 44 (2011) 1788- 1791.[19] Z.Y. Yuan, Y. Xiao, Y. Yang, T. Xiong, Soluble ladder conjugated polymer composed of perylenediimides and thieno[3,2-b]thiophene (LCPT): a highly efficient synthesis via photocyclization with the sunlight, Macromolecules 44 (2011) 1788- 1791.

    20. [20] Y. Yang, Y.C. Wang, Y.P. Xie, et al., Fused perylenebisimide-carbazole: new ladder chromophores with enhanced third-order onlinear optical activities, Chem. Commun. 47 (2011) 10749-10751.[20] Y. Yang, Y.C. Wang, Y.P. Xie, et al., Fused perylenebisimide-carbazole: new ladder chromophores with enhanced third-order onlinear optical activities, Chem. Commun. 47 (2011) 10749-10751.

    21. [21] B. Paczosa-Bator, L. Cabaj, R. Piech, K. Skupień, Platinum nanoparticles intermediate layer in solid-state selective electrodes, Analyst 137 (2012) 5272-5277.[21] B. Paczosa-Bator, L. Cabaj, R. Piech, K. Skupień, Platinum nanoparticles intermediate layer in solid-state selective electrodes, Analyst 137 (2012) 5272-5277.

    22. [22] J. Sutter, A. Radu, S. Peper, E. Bakker, E. Pretsch, Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range, Anal. Chim. Acta 523 (2004) 53-59.[22] J. Sutter, A. Radu, S. Peper, E. Bakker, E. Pretsch, Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range, Anal. Chim. Acta 523 (2004) 53-59.

    23. [23] R. Marco, J.P. Veder, G. Clarke, A. Nelson, K. Prince, E. Pretsch, E. Bakker, Evidence of a water layer in solid-contact polymeric ion sensors, Phys. Chem. Chem. Phys. 10 (2008) 73-76.[23] R. Marco, J.P. Veder, G. Clarke, A. Nelson, K. Prince, E. Pretsch, E. Bakker, Evidence of a water layer in solid-contact polymeric ion sensors, Phys. Chem. Chem. Phys. 10 (2008) 73-76.

    24. [24] M. Fierke, C.Z. Lai, P. Bühlmann, A. Stein, Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes, Anal. Chem. 82 (2010) 680-688.[24] M. Fierke, C.Z. Lai, P. Bühlmann, A. Stein, Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes, Anal. Chem. 82 (2010) 680-688.

    25. [25] B. Paczosa-Bator, All-solid-state selective electrodes using carbon black, Talanta 93 (2012) 424-427.[25] B. Paczosa-Bator, All-solid-state selective electrodes using carbon black, Talanta 93 (2012) 424-427.

    26. [26] M. Fibbioli, W.E. Morf, M. Badertscher, N. Rooij, E. Pretsch, Potential drifts of solidcontacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane, Electroanalysis 12 (2000) 1286-1292.[26] M. Fibbioli, W.E. Morf, M. Badertscher, N. Rooij, E. Pretsch, Potential drifts of solidcontacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane, Electroanalysis 12 (2000) 1286-1292.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1332
  • HTML全文浏览量:  19
文章相关
  • 收稿日期:  2013-07-19
  • 网络出版日期:  2013-10-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章