Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics

Guang-Yin Fan Wen-Jun Huang

Citation:  Guang-Yin Fan, Wen-Jun Huang. Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics[J]. Chinese Chemical Letters, 2014, 25(2): 359-363. shu

Synthesis of ruthenium/reduced graphene oxide composites and application for the selective hydrogenation of halonitroaromatics

    通讯作者: Guang-Yin Fan,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (No. 21207109) (No. 21207109)

    Scientific Research Fund of Sichuan Provincial Education Department (No. 11ZA034) (No. 11ZA034)

    the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (No. LZJ1205). (No. LZJ1205)

摘要: Reduced graphene oxide (RGO) supported ruthenium (Ru) catalyst was prepared by an impregnation method using RuCl3 as a precursor and RGO as a support. The catalyst Ru/RGO was used for the selective hydrogenation of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN), showing a selectivity of 96% at complete conversion of p-CNB at 60 ℃ and 3.0 MPa H2. The Ru/RGO catalyst was extremely active for the hydrogenation of a series of nitroarenes, which can be attributed to the small sized and the fine dispersity of the Ru nanoparticles on the RGO sheets characterized by TEM. Moreover, the catalyst also can be recycled five times without the loss of activity.

English

  • 
    1. [1] J. Zhang, Y. Wang, H. Ji, et al., Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, J. Catal. 229 (2005) 114-118.[1] J. Zhang, Y. Wang, H. Ji, et al., Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene, J. Catal. 229 (2005) 114-118.

    2. [2] F.W. Zhang, J. Jin, X. Zhong, et al., Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chem. 13 (2011) 1238-1243.[2] F.W. Zhang, J. Jin, X. Zhong, et al., Pd immobilized on amine-functionalized magnetite nanoparticles: a novel and highly active catalyst for hydrogenation and Heck reactions, Green Chem. 13 (2011) 1238-1243.

    3. [3] C. Liang, J. Han, K. Shen, et al., Palladium nanoparticle microemulsions: formation and use in catalytic hydrogenation of o-chloronitrobenzene, Chem. Eng. J. 165 (2010) 709-713.[3] C. Liang, J. Han, K. Shen, et al., Palladium nanoparticle microemulsions: formation and use in catalytic hydrogenation of o-chloronitrobenzene, Chem. Eng. J. 165 (2010) 709-713.

    4. [4] Q. Xu, X.M. Liu, J.R. Chen, R.X. Li, X.J. Li, Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/g-Al2O3, J. Mol. Catal. A: Chem 260 (2006) 299-305.[4] Q. Xu, X.M. Liu, J.R. Chen, R.X. Li, X.J. Li, Modification mechanism of Sn4+ for hydrogenation of p-chloronitrobenzene over PVP-Pd/g-Al2O3, J. Mol. Catal. A: Chem 260 (2006) 299-305.

    5. [5] C. Su, X.N. Li, Q.F. Zhang, et al., Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation, Chin. Chem. Lett. 24 (2013) 59-62.[5] C. Su, X.N. Li, Q.F. Zhang, et al., Behavior of adsorbed diphenyl-sulfide on the Pd/C catalyst for o-chloronitrobenzene hydrogenation, Chin. Chem. Lett. 24 (2013) 59-62.

    6. [6] R. Nie, J. Wang, L. Wang, et al., Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes, Carbon 50 (2012) 586-596.[6] R. Nie, J. Wang, L. Wang, et al., Platinum supported on reduced graphene oxide as a catalyst for hydrogenation of nitroarenes, Carbon 50 (2012) 586-596.

    7. [7] Y. Motoyama, Y. Lee, K. Tsuji, et al., Platinum nanoparticles supported on nitrogendoped carbon nanofibers as efficient poisoning catalysts for the hydrogenation of nitroarenes, ChemCatChem 3 (2011) 1578-1581.[7] Y. Motoyama, Y. Lee, K. Tsuji, et al., Platinum nanoparticles supported on nitrogendoped carbon nanofibers as efficient poisoning catalysts for the hydrogenation of nitroarenes, ChemCatChem 3 (2011) 1578-1581.

    8. [8] K.L. Xu, Y. Zhang, X.R. Chen, et al., Convenient and selective hydrogenation of nitro aromatics with a platinum nanocatalyst under ambient pressure, Adv. Synth. Catal. 353 (2011) 1260-1264.[8] K.L. Xu, Y. Zhang, X.R. Chen, et al., Convenient and selective hydrogenation of nitro aromatics with a platinum nanocatalyst under ambient pressure, Adv. Synth. Catal. 353 (2011) 1260-1264.

    9. [9] Z. Sun, Y. Zhao, Y. Xie, et al., The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes, Green Chem. 12 (2010) 1007-1011.[9] Z. Sun, Y. Zhao, Y. Xie, et al., The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes, Green Chem. 12 (2010) 1007-1011.

    10. [10] W.X. Tu, S.J. Cao, L.P. Yang, W.C. Wang, Modification effects of magnetic supports and bimetallic structures on palladium nanocluster catalysts, Chem. Eng. J. 143 (2008) 244-248.[10] W.X. Tu, S.J. Cao, L.P. Yang, W.C. Wang, Modification effects of magnetic supports and bimetallic structures on palladium nanocluster catalysts, Chem. Eng. J. 143 (2008) 244-248.

    11. [11] Y. Motoyama, K. Kamo, H. Nagashima, Catalysis in polysiloxane gels: platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes, Org. Lett. 11 (2009) 1345-1348.[11] Y. Motoyama, K. Kamo, H. Nagashima, Catalysis in polysiloxane gels: platinumcatalyzed hydrosilylation of polymethylhydrosiloxane leading to reusable catalysts for reduction of nitroarenes, Org. Lett. 11 (2009) 1345-1348.

    12. [12] C. Antonetti, M. Oubenali, A.M.R. Galletti, P. Serp, G. Vannucci, Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline, Appl. Catal. A 421 (2012) 99-107.[12] C. Antonetti, M. Oubenali, A.M.R. Galletti, P. Serp, G. Vannucci, Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline, Appl. Catal. A 421 (2012) 99-107.

    13. [13] M. Oubenali, G. Vanucci, B. Machado, et al., Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts, ChemSusChem 4 (2011) 950-956.[13] M. Oubenali, G. Vanucci, B. Machado, et al., Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts, ChemSusChem 4 (2011) 950-956.

    14. [14] J. Ning, J. Xu, J. Liu, et al., A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol, Catal. Commun. 8 (2007) 1763-1766.[14] J. Ning, J. Xu, J. Liu, et al., A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzene in ethanol, Catal. Commun. 8 (2007) 1763-1766.

    15. [15] M. Liu, W. Yu, H. Liu, Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts, J. Mol. Catal. A: Chem. 138 (1999) 295-303.[15] M. Liu, W. Yu, H. Liu, Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts, J. Mol. Catal. A: Chem. 138 (1999) 295-303.

    16. [16] B. Zuo, Y. Wang, Q. Wang, et al., An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles, J. Catal. 222 (2004) 493-498.[16] B. Zuo, Y. Wang, Q. Wang, et al., An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles, J. Catal. 222 (2004) 493-498.

    17. [17] M. Pietrowski, M. Zieliński, M. Wojciechowska, Selective reduction of chloronitrobenzene to chloroaniline on Ru/MgF2 catalysts, Catal. Lett. 128 (2009) 31-35.[17] M. Pietrowski, M. Zieliński, M. Wojciechowska, Selective reduction of chloronitrobenzene to chloroaniline on Ru/MgF2 catalysts, Catal. Lett. 128 (2009) 31-35.

    18. [18] M. Pietrowski, M. Zieliński, M. Wojciechowska, High-selectivity hydrogenation of chloronitrobenzene to chloroaniline over magnesium fluoride-supported bimetallic ruthenium-copper catalysts, Chem. Cat. Chem. 3 (2011) 835-838.[18] M. Pietrowski, M. Zieliński, M. Wojciechowska, High-selectivity hydrogenation of chloronitrobenzene to chloroaniline over magnesium fluoride-supported bimetallic ruthenium-copper catalysts, Chem. Cat. Chem. 3 (2011) 835-838.

    19. [19] M. Pietrowski, M. Wojciechowska, An efficient ruthenium-vanadium catalyst for selective hydrogenation of ortho-chloronitrobenzene, Catal. Today 142 (2009) 211-214.[19] M. Pietrowski, M. Wojciechowska, An efficient ruthenium-vanadium catalyst for selective hydrogenation of ortho-chloronitrobenzene, Catal. Today 142 (2009) 211-214.

    20. [20] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.[20] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., Improved synthesis of graphene oxide, ACS Nano 4 (2010) 4806-4814.

    21. [21] X. Xu, X. Li, H. Gu, Z. Huang, X. Yan, A highly active and chemoselective assembled Pt/C (Fe) catalyst for hydrogenation of o-chloronitrobenzene, Appl. Catal. A 429- 430 (2012) 17-23.[21] X. Xu, X. Li, H. Gu, Z. Huang, X. Yan, A highly active and chemoselective assembled Pt/C (Fe) catalyst for hydrogenation of o-chloronitrobenzene, Appl. Catal. A 429- 430 (2012) 17-23.

    22. [22] J.B. Goodenough, R. Manoharan, A. Shukla, K.V. Ramesh, Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study, Chem. Mater. 1 (1989) 391-398.[22] J.B. Goodenough, R. Manoharan, A. Shukla, K.V. Ramesh, Intraalloy electron transfer and catalyst performance: a spectroscopic and electrochemical study, Chem. Mater. 1 (1989) 391-398.

    23. [23] S. Liu, J. Tian, L. Wang, et al., Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing, Biosens. Bioelectron. 26 (2011) 4491-4496.[23] S. Liu, J. Tian, L. Wang, et al., Self-assembled graphene platelet-glucose oxidase nanostructures for glucose biosensing, Biosens. Bioelectron. 26 (2011) 4491-4496.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1405
  • HTML全文浏览量:  22
文章相关
  • 收稿日期:  2013-07-11
  • 网络出版日期:  2013-11-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章