Enhanced dispersibility and thermal stability of β-cyclodextrin functionalized graphene

Shu-Peng Zhang Bin Liu Cheng-Yin Li Wei Chen Zhi-Jian Yao Dong-Ting Yao Rong-Bing Yu Hai-Ou Song

Citation:  Shu-Peng Zhang, Bin Liu, Cheng-Yin Li, Wei Chen, Zhi-Jian Yao, Dong-Ting Yao, Rong-Bing Yu, Hai-Ou Song. Enhanced dispersibility and thermal stability of β-cyclodextrin functionalized graphene[J]. Chinese Chemical Letters, 2014, 25(2): 355-358. shu

Enhanced dispersibility and thermal stability of β-cyclodextrin functionalized graphene

    通讯作者: Shu-Peng Zhang,
    Hai-Ou Song,
摘要: A series of β-cyclodextrin (CDs) functionalized graphene nanohybrids have been successfully fabricated utilizing the classical covalent modification methods at different reaction temperatures. It is very interesting that although both CDs and graphene oxide (GO) could be easily decomposed, the effective combination of GO with CDs leads to significantly enhanced thermal stability of graphene derivatives (GO-CDs). Moreover, the introduction of CDs could dramatically improve the dispersibility promotion of our products in both polar/protic and nonpolar/aprotic solvents, which will contribute to the preparation of polymer nanocomposites and increase of their thermal stability. The improved thermal degradation temperatures can be obtained for polyvinyl alcohol after filling with as little as 1 wt.% of the hybrid. The obtained products could be potentially used in heat-retardant or thermal-control materials.

English

  • 
    1. [1] T. Kuilla, S. Bhadra, D.H. Yao, et al., Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350-1375.[1] T. Kuilla, S. Bhadra, D.H. Yao, et al., Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35 (2010) 1350-1375.

    2. [2] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules 43 (2010) 6515-6530.[2] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules 43 (2010) 6515-6530.

    3. [3] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240.[3] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39 (2010) 228-240.

    4. [4] T. Kuila, S. Bose, C.E. Hong, et al., Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method, Carbon 49 (2011) 1033-1037.[4] T. Kuila, S. Bose, C.E. Hong, et al., Preparation of functionalized graphene/linear low density polyethylene composites by a solution mixing method, Carbon 49 (2011) 1033-1037.

    5. [5] X. Zhao, Q.H. Zhang, D.J. Chen, et al., Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites, Macromolecules 43 (2010) 2357-2363.[5] X. Zhao, Q.H. Zhang, D.J. Chen, et al., Enhanced mechanical properties of graphenebased poly(vinyl alcohol) composites, Macromolecules 43 (2010) 2357-2363.

    6. [6] J.I. Paredes, S. Villar-Rodil, A. Marti´nez-Alonso, J.M.D. Tasco´ n, Graphene oxide dispersions in organic solvents, Langmuir 24 (2008) 10560-10564.[6] J.I. Paredes, S. Villar-Rodil, A. Marti´nez-Alonso, J.M.D. Tasco´ n, Graphene oxide dispersions in organic solvents, Langmuir 24 (2008) 10560-10564.

    7. [7] W. Cai, R.D. Piner, F.J. Stadermann, et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science 321 (2008) 1815-1817.[7] W. Cai, R.D. Piner, F.J. Stadermann, et al., Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide, Science 321 (2008) 1815-1817.

    8. [8] Y.S. Feng, J.J.Ma, X.Y. Lin, et al.,Covalent functionalizationof graphene oxideby 9-(4- aminophenyl)acridine and its derivatives, Chin. Chem. Lett. 23 (2012) 1411-1414.[8] Y.S. Feng, J.J.Ma, X.Y. Lin, et al.,Covalent functionalizationof graphene oxideby 9-(4- aminophenyl)acridine and its derivatives, Chin. Chem. Lett. 23 (2012) 1411-1414.

    9. [9] S.P. Zhang, P. Xiong, X.J. Yang, et al., Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability, Nanoscale 3 (2011) 2169-2174.[9] S.P. Zhang, P. Xiong, X.J. Yang, et al., Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability, Nanoscale 3 (2011) 2169-2174.

    10. [10] S.P. Zhang, H.O. Song, Preparation of dispersible graphene oxide as a filler to increase the thermal stability of a flame retarding polymer, New Carbon Mater. 28 (2013) 61-65.[10] S.P. Zhang, H.O. Song, Preparation of dispersible graphene oxide as a filler to increase the thermal stability of a flame retarding polymer, New Carbon Mater. 28 (2013) 61-65.

    11. [11] S.P. Zhang, H.O. Song, Preparation of β-cyclodextrin functionalized graphene and enhancement of the thermal stability, Chem. J. Chin. Univ. 33 (2012) 1214-1219.[11] S.P. Zhang, H.O. Song, Preparation of β-cyclodextrin functionalized graphene and enhancement of the thermal stability, Chem. J. Chin. Univ. 33 (2012) 1214-1219.

    12. [12] S.P. Zhang, H.O. Song, Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability, New J. Chem. 36 (2012) 1733.[12] S.P. Zhang, H.O. Song, Supramolecular graphene oxide-alkylamine hybrid materials: variation of dispersibility and improvement of thermal stability, New J. Chem. 36 (2012) 1733.

    13. [13] S.P. Zhang, H.O. Song, Preparation and characterization of graphene oxide/bcyclodextrin supramolecular hybrid material, J. Inorg. Mater. 27 (2012) 596-602.[13] S.P. Zhang, H.O. Song, Preparation and characterization of graphene oxide/bcyclodextrin supramolecular hybrid material, J. Inorg. Mater. 27 (2012) 596-602.

    14. [14] S.P. Zhang, H.O. Song, Q.L. Qian, D.T. Yao, J.M. Han, Covalent modification strategies for enhancing of dispersibility and thermal stability of the functionalized graphene, Chemistry 76 (2013) 506-511.[14] S.P. Zhang, H.O. Song, Q.L. Qian, D.T. Yao, J.M. Han, Covalent modification strategies for enhancing of dispersibility and thermal stability of the functionalized graphene, Chemistry 76 (2013) 506-511.

    15. [15] V. Georgakilas, M. Otyepka, A.B. Bourlinos, et al., Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev. 112 (2012) 6156-6214.[15] V. Georgakilas, M. Otyepka, A.B. Bourlinos, et al., Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications, Chem. Rev. 112 (2012) 6156-6214.

    16. [16] J.H. Liu, G.S. Chen, M. Jiang, Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers, Macromolecules 44 (2011) 7682-7691.[16] J.H. Liu, G.S. Chen, M. Jiang, Supramolecular hybrid hydrogels from noncovalently functionalized graphene with block copolymers, Macromolecules 44 (2011) 7682-7691.

    17. [17] Y. Yang, Y.M. Zhang, Y. Chen, et al., Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery, Chem. Eur. J. 18 (2012) 4208-4215.[17] Y. Yang, Y.M. Zhang, Y. Chen, et al., Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery, Chem. Eur. J. 18 (2012) 4208-4215.

    18. [18] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339.[18] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80 (1958) 1339.

    19. [19] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999) 771-778.[19] N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, et al., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11 (1999) 771-778.

    20. [20] S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.[20] S. Stankovich, D.A. Dikin, R.D. Piner, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45 (2007) 1558-1565.

    21. [21] S. Niyogi, E. Bekyarova, M.E. Itkis, et al., Solution properties of graphite and graphene, J. Am. Chem. Soc. 128 (2006) 7720-7721.[21] S. Niyogi, E. Bekyarova, M.E. Itkis, et al., Solution properties of graphite and graphene, J. Am. Chem. Soc. 128 (2006) 7720-7721.

    22. [22] C. Nethravathiand, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon 46 (2008) 1994-1998.[22] C. Nethravathiand, M. Rajamathi, Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide, Carbon 46 (2008) 1994-1998.

    23. [23] Y.W. Cao, J.C. Feng, P.Y. Wu, Alkyl-functionalized graphene nanosheets with improved lipophilicity, Carbon 48 (2010) 1683-1685.[23] Y.W. Cao, J.C. Feng, P.Y. Wu, Alkyl-functionalized graphene nanosheets with improved lipophilicity, Carbon 48 (2010) 1683-1685.

    24. [24] X.M. Yang, L. Li, S.M. Shang, X.M. Tao, Synthesis and characterization of layeraligned poly(vinyl alcohol)/graphene nanocomposites, Polymer 51 (2010) 3431- 3435.[24] X.M. Yang, L. Li, S.M. Shang, X.M. Tao, Synthesis and characterization of layeraligned poly(vinyl alcohol)/graphene nanocomposites, Polymer 51 (2010) 3431- 3435.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1324
  • HTML全文浏览量:  20
文章相关
  • 收稿日期:  2013-08-27
  • 网络出版日期:  2013-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章