Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands

Cun-Wei Qian Wen-Lin Lv Qian-Shou Zong Mao-Yuan Wang Dong Fang

Citation:  Cun-Wei Qian, Wen-Lin Lv, Qian-Shou Zong, Mao-Yuan Wang, Dong Fang. Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands[J]. Chinese Chemical Letters, 2014, 25(2): 337-340. shu

Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands

    通讯作者: Cun-Wei Qian,
  • 基金项目:

    Key Laboratory of Organic Synthesis of Jiangsu Province for the financial support (Nos. 21201147, 21302063, KJS1112). (Nos. 21201147, 21302063, KJS1112)

摘要: A series of salicylaldimine ligands were designed to promote the copper-catalyzed Ullmann crosscoupling reaction. After a screening process, 2-((2-isopropylphenylimino)methyl)phenol was found to serve as a good supporting ligand for this reaction. Employing this Schiff-base ligand as a new supporting ligand, the copper-catalyzed coupling reactions of aryl bromides and aryl iodides with various phenols successfully proceeded in good yields under mild conditions. Various diaryl ethers were obtained with excellent yields in dioxane in the presence of K3PO4 and a catalytic amount of copper(I) salt.

English

  • 
    1. [1] (a) J. Lindley, Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (b) F. Theil, Synthesis of diaryl ethers: a long-standing problem has been solved, Angew. Chem. Int. Ed. Engl. 38 (1999) 2345-2347; (c) J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065; (d) S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)- O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449; (e) K. Kunz, U. Scholz, D. Ganzer, Renaissance of Ullmann and Goldberg reactionsprogress in copper catalyzed C-N-, C-O- and C-S-coupling, Synlett 15 (2003) 2428-2439; (f) F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096- 3099.[1] (a) J. Lindley, Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (b) F. Theil, Synthesis of diaryl ethers: a long-standing problem has been solved, Angew. Chem. Int. Ed. Engl. 38 (1999) 2345-2347; (c) J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065; (d) S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)- O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449; (e) K. Kunz, U. Scholz, D. Ganzer, Renaissance of Ullmann and Goldberg reactionsprogress in copper catalyzed C-N-, C-O- and C-S-coupling, Synlett 15 (2003) 2428-2439; (f) F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096- 3099.

    2. [2] (a) M.E. Jung, J.C. Rohloff, Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids, J. Org. Chem. 50 (1985) 4909-4913; (b) S.B. Singh, G.R. Pettit, Antineoplastic agents. 206. Structure of the cytostatic macrocyclic lactone combretastatin D-2, J. Org. Chem. 55 (1990) 2797-2800; (c) V.H. Deshpande, N.J. Gohkhale, Synthesis of combretastatin D-2, Tetrahedron Lett. 33 (1992) 4213-4216; (d) R. Nagarajan, D.A. Evans, K.M. DeViries, Glycopeptide Antibiotics (Drugs and the Pharmaceutical Sciences), Marcel Decker, New York, 1994, pp. 63-104; (e) S. Zenitani, S. Tashiro, K. Shindo, et al., A novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities, J. Antibiot. 56 (2003) 617-621; (f) P. Cristau, J.P. Vors, J.P. Zhu, Rapid and diverse route to natural product-like biaryl ether containing macrocycles, Tetrahedron 59 (2003) 7859-7870; (g) C.W. Qian, Y. Pang, D. Fang, Q.S. Zong, Synthesis and bioactivities of new triazole compounds containing aryl ether, Chin. J. Pestic. Sci. 15 (2013) 256-260.[2] (a) M.E. Jung, J.C. Rohloff, Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids, J. Org. Chem. 50 (1985) 4909-4913; (b) S.B. Singh, G.R. Pettit, Antineoplastic agents. 206. Structure of the cytostatic macrocyclic lactone combretastatin D-2, J. Org. Chem. 55 (1990) 2797-2800; (c) V.H. Deshpande, N.J. Gohkhale, Synthesis of combretastatin D-2, Tetrahedron Lett. 33 (1992) 4213-4216; (d) R. Nagarajan, D.A. Evans, K.M. DeViries, Glycopeptide Antibiotics (Drugs and the Pharmaceutical Sciences), Marcel Decker, New York, 1994, pp. 63-104; (e) S. Zenitani, S. Tashiro, K. Shindo, et al., A novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities, J. Antibiot. 56 (2003) 617-621; (f) P. Cristau, J.P. Vors, J.P. Zhu, Rapid and diverse route to natural product-like biaryl ether containing macrocycles, Tetrahedron 59 (2003) 7859-7870; (g) C.W. Qian, Y. Pang, D. Fang, Q.S. Zong, Synthesis and bioactivities of new triazole compounds containing aryl ether, Chin. J. Pestic. Sci. 15 (2013) 256-260.

    3. [3] (a) G. Mann, J.F. Hartwig, Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(Ⅲ), J. Am. Chem. Soc. 118 (1996) 13109-13110; (b) M. Palucki, J.P. Wolfe, S.L. Buchwald, Synthesis of oxygen heterocycles via a palladium-catalyzed C-O bond-forming reaction, J. Am. Chem. Soc. 118 (1996) 10333-10334; (c) M. Palucki, J.P. Wolfe, S.L. Buchwald, Palladium-catalyzed intermolecular carbon-oxygen bond formation: a new synthesis of aryl ethers, J. Am. Chem. Soc. 119 (1997) 3395-3396; (d) A. Aranyos, D.W. Old, A. Kiyomori, et al., Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers, J. Am. Chem. Soc. 121 (1999) 4369-4378; (e) G. Mann, C. Incarvito, A.L. Rheigold, J.F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc. 121 (1999) 3224- 3225; (f) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566; (g) D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2046; (h) A.V. Vorogushin, X.H. Huang, S.L. Buchwald, Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation, J. Am. Chem. Soc. 127 (2005) 8146-8149; (i) C.H. Burgos, T.E. Barder, X.H. Huang, S.L. Buchwald, Significantly improved method for the palladium-catalyzed coupling of phenols with aryl halides: understanding ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 4321-4326.[3] (a) G. Mann, J.F. Hartwig, Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(Ⅲ), J. Am. Chem. Soc. 118 (1996) 13109-13110; (b) M. Palucki, J.P. Wolfe, S.L. Buchwald, Synthesis of oxygen heterocycles via a palladium-catalyzed C-O bond-forming reaction, J. Am. Chem. Soc. 118 (1996) 10333-10334; (c) M. Palucki, J.P. Wolfe, S.L. Buchwald, Palladium-catalyzed intermolecular carbon-oxygen bond formation: a new synthesis of aryl ethers, J. Am. Chem. Soc. 119 (1997) 3395-3396; (d) A. Aranyos, D.W. Old, A. Kiyomori, et al., Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers, J. Am. Chem. Soc. 121 (1999) 4369-4378; (e) G. Mann, C. Incarvito, A.L. Rheigold, J.F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc. 121 (1999) 3224- 3225; (f) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566; (g) D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2046; (h) A.V. Vorogushin, X.H. Huang, S.L. Buchwald, Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation, J. Am. Chem. Soc. 127 (2005) 8146-8149; (i) C.H. Burgos, T.E. Barder, X.H. Huang, S.L. Buchwald, Significantly improved method for the palladium-catalyzed coupling of phenols with aryl halides: understanding ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 4321-4326.

    4. [4] F. Ullmann, The Ullmann condensation and the synthesis of diarylamines, Ber. Dtsch. Chem Ges. 36 (1903) 2382-2384.[4] F. Ullmann, The Ullmann condensation and the synthesis of diarylamines, Ber. Dtsch. Chem Ges. 36 (1903) 2382-2384.

    5. [5] (a) J.F. Marcoux, S. Doye, S.L. Buchwald, A general copper-catalyzed synthesis of diarylethers, J. Am. Chem. Soc. 119 (1997) 10539-10540; (b) P.J. Fagan, E. Hauptman, R. Shapiro, A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, J. Am. Chem. Soc. 122 (2000) 5043-5051; (c) C.W. Qian, S.J. Xu, Q.S. Zong, D. Fang, Copper-catalyzed synthesis of triarylamines from aryl halides and arylamines, Chin. J. Chem. 30 (2012) 1881-1885; (d) E. Buck, Z.J. Song, D. Tschaen, et al., Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione, Org. Lett. 4 (2002) 1623- 1626; (e) D. Ma, Q. Cai, H. Zhang, N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides, Org. Lett. 5 (2003) 3799-3802; (f) Q. Cai, B. Zou, D.W. Ma, Mild Ullmann-type biaryl ether formation reaction by Combination of ortho-substituent and ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 1276-1279; (g) Q. Cai, G. He, D.W. Ma, Mild and nonracemizing conditions for Ullmann-type diaryl ether formation between aryl iodides and tyrosine derivatives, J. Org. Chem. 71 (2006) 5268-5273; (h) A. Ouali, J.F. Spindler, H.J. Cristau, M. Taillefer, Mild conditions for coppercatalyzed coupling reaction of phenols and aryl iodides and bromides, Adv. Synth. Catal. 348 (2006) 499-505; (i) H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Tailefer, A general and mild Ullmann-type synthesis of diaryl ethers, Org. Lett. 6 (2004) 913-916; (j) H.H. Rao, Y. Jin, H. Fu, Y.Y. Jiang, Y.F. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester, Chem. Eur. J. 12 (2006) 3636-3646; (k) C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Phosphazene P4-But base for the Ullmann biaryl ether synthesis, Chem. Commun. (1998) 2091-2092; (l) X. Lü, W.L. Bao, A b-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions, J. Org. Chem. 72 (2007) 3863-3867; (m) A.B. Naidu, O.R. Raghunath, D.J.C. Prasad, G. Sekar, An efficient BINAM-copper( II) catalyzed Ullmann-type synthesis of diaryl ethers, Tetrahedron Lett. 49 (2008) 1057-1061; (n) Y. Chen, H. Chen, 1,1,1-Tris (hydroxymethyl) ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett. 8 (2006) 5609-5612; (o) T. Miao, L. Wang, Immobilization of copper in organic-inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification, Tetrahedron Lett. 48 (2007) 95-99; (p) D.A. Evans, J.L. Katz, T.R. West, Synthesis of diaryl ethers through the copperpromoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine, Tetrahedron Lett. 39 (1998) 2937-2940; (q) Y. Zhao, Y. Wang, H. Sun, L. Li, H. Zhang, Ullmann reaction in tetraethyl orthosilicate: a novel synthesis of triarylamines and diaryl ethers, Chem. Commun. (2007) 3186-3188; (r) Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, (2-Pyridyl)acetone-promoted Cucatalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides, J. Org. Chem. 74 (2009) 7187-7190; (s) J.W.W. Chang, S. Chee, S. Maka, et al., Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 1: O-arylation of phenols with aryl halides, Tetrahedron Lett. 49 (2008) 2018-2022; (t) D. Maiti, S.L. Buchwald, Cu-catalyzed arylation of phenols: synthesis of sterically hindered and heteroaryl diaryl ethers, J. Org. Chem. 75 (2010) 1791-1794; (u) C.W. Qian, Q.S. Zong, D. Fang, Methenamine as an efficient ligand for coppercatalyzed coupling of phenols with aryl halides, Chin. J. Chem. 30 (2012) 199-203; (v) R.K. Gujadhur, C.G. Bates, D. Venkataraman, Formation of aryl-nitrogen, aryloxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts, Org. Lett. 3 (2001) 4315-4317; (w) R.K. Gujadhur, D. Venkataraman, Synthesis of diaryl ethers using an easy-toprepare, air- stable, soluble copper(I) catalyst, Synth. Commun. 31 (2001) 2865- 2879; (x) J.J. Niu, H. Zhou, Z.G. Li, J.W. Xu, S.J. Hu, An efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(I)-bipyridyl complex, J. Org. Chem. 73 (2008) 7814-7817.[5] (a) J.F. Marcoux, S. Doye, S.L. Buchwald, A general copper-catalyzed synthesis of diarylethers, J. Am. Chem. Soc. 119 (1997) 10539-10540; (b) P.J. Fagan, E. Hauptman, R. Shapiro, A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, J. Am. Chem. Soc. 122 (2000) 5043-5051; (c) C.W. Qian, S.J. Xu, Q.S. Zong, D. Fang, Copper-catalyzed synthesis of triarylamines from aryl halides and arylamines, Chin. J. Chem. 30 (2012) 1881-1885; (d) E. Buck, Z.J. Song, D. Tschaen, et al., Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione, Org. Lett. 4 (2002) 1623- 1626; (e) D. Ma, Q. Cai, H. Zhang, N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides, Org. Lett. 5 (2003) 3799-3802; (f) Q. Cai, B. Zou, D.W. Ma, Mild Ullmann-type biaryl ether formation reaction by Combination of ortho-substituent and ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 1276-1279; (g) Q. Cai, G. He, D.W. Ma, Mild and nonracemizing conditions for Ullmann-type diaryl ether formation between aryl iodides and tyrosine derivatives, J. Org. Chem. 71 (2006) 5268-5273; (h) A. Ouali, J.F. Spindler, H.J. Cristau, M. Taillefer, Mild conditions for coppercatalyzed coupling reaction of phenols and aryl iodides and bromides, Adv. Synth. Catal. 348 (2006) 499-505; (i) H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Tailefer, A general and mild Ullmann-type synthesis of diaryl ethers, Org. Lett. 6 (2004) 913-916; (j) H.H. Rao, Y. Jin, H. Fu, Y.Y. Jiang, Y.F. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester, Chem. Eur. J. 12 (2006) 3636-3646; (k) C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Phosphazene P4-But base for the Ullmann biaryl ether synthesis, Chem. Commun. (1998) 2091-2092; (l) X. Lü, W.L. Bao, A b-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions, J. Org. Chem. 72 (2007) 3863-3867; (m) A.B. Naidu, O.R. Raghunath, D.J.C. Prasad, G. Sekar, An efficient BINAM-copper( II) catalyzed Ullmann-type synthesis of diaryl ethers, Tetrahedron Lett. 49 (2008) 1057-1061; (n) Y. Chen, H. Chen, 1,1,1-Tris (hydroxymethyl) ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett. 8 (2006) 5609-5612; (o) T. Miao, L. Wang, Immobilization of copper in organic-inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification, Tetrahedron Lett. 48 (2007) 95-99; (p) D.A. Evans, J.L. Katz, T.R. West, Synthesis of diaryl ethers through the copperpromoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine, Tetrahedron Lett. 39 (1998) 2937-2940; (q) Y. Zhao, Y. Wang, H. Sun, L. Li, H. Zhang, Ullmann reaction in tetraethyl orthosilicate: a novel synthesis of triarylamines and diaryl ethers, Chem. Commun. (2007) 3186-3188; (r) Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, (2-Pyridyl)acetone-promoted Cucatalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides, J. Org. Chem. 74 (2009) 7187-7190; (s) J.W.W. Chang, S. Chee, S. Maka, et al., Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 1: O-arylation of phenols with aryl halides, Tetrahedron Lett. 49 (2008) 2018-2022; (t) D. Maiti, S.L. Buchwald, Cu-catalyzed arylation of phenols: synthesis of sterically hindered and heteroaryl diaryl ethers, J. Org. Chem. 75 (2010) 1791-1794; (u) C.W. Qian, Q.S. Zong, D. Fang, Methenamine as an efficient ligand for coppercatalyzed coupling of phenols with aryl halides, Chin. J. Chem. 30 (2012) 199-203; (v) R.K. Gujadhur, C.G. Bates, D. Venkataraman, Formation of aryl-nitrogen, aryloxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts, Org. Lett. 3 (2001) 4315-4317; (w) R.K. Gujadhur, D. Venkataraman, Synthesis of diaryl ethers using an easy-toprepare, air- stable, soluble copper(I) catalyst, Synth. Commun. 31 (2001) 2865- 2879; (x) J.J. Niu, H. Zhou, Z.G. Li, J.W. Xu, S.J. Hu, An efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(I)-bipyridyl complex, J. Org. Chem. 73 (2008) 7814-7817.

    6. [6] (a) K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450; (b) R. Drozdzak, B. Allaert, N. Ledoux, et al., Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses, Coord. Chem. Rev. 249 (2005) 3055-3074; (c) L. Canali, D.C. Sherrington, Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis, Chem. Soc. Rev. 28 (1999) 85-93; (d) B.Y. Li, Y.R. Wang, Y.M. Yao, Y. Zhang, Q. Shen, Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands, J. Organomet. Chem. 694 (2009) 2409-2414; (e) J. Cui, M.J. Zhang, Y.W. Zhang, Amino-salicylaldimine-palladium(II) complexes: new and efficient catalysts for Suzuki and Heck reactions, Inorg. Chem. Commun. 13 (2010) 81-85; (f) W. Yang, H. Liu, D.M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction, Org. Biomol. Chem. 8 (2010) 2956-2960; (g) W. Yang, D.M. Du, Highly enantioselective Henry reaction catalyzed by C2- symmetricmodular BINOL-oxazoline Schiff base copper(II) complexes generated in situ, Eur. J. Org. Chem. 2011 (2011) 1552-1556.[6] (a) K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450; (b) R. Drozdzak, B. Allaert, N. Ledoux, et al., Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses, Coord. Chem. Rev. 249 (2005) 3055-3074; (c) L. Canali, D.C. Sherrington, Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis, Chem. Soc. Rev. 28 (1999) 85-93; (d) B.Y. Li, Y.R. Wang, Y.M. Yao, Y. Zhang, Q. Shen, Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands, J. Organomet. Chem. 694 (2009) 2409-2414; (e) J. Cui, M.J. Zhang, Y.W. Zhang, Amino-salicylaldimine-palladium(II) complexes: new and efficient catalysts for Suzuki and Heck reactions, Inorg. Chem. Commun. 13 (2010) 81-85; (f) W. Yang, H. Liu, D.M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction, Org. Biomol. Chem. 8 (2010) 2956-2960; (g) W. Yang, D.M. Du, Highly enantioselective Henry reaction catalyzed by C2- symmetricmodular BINOL-oxazoline Schiff base copper(II) complexes generated in situ, Eur. J. Org. Chem. 2011 (2011) 1552-1556.

    7. [7] (a) F.S. Liu, Y.T. Huang, C. Lu, D.S. Shen, T. Cheng, Efficient salicylaldimine ligands for a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, Appl. Organomet. Chem. 26 (2012) 425-429; (b) N. Xie, Y. Chen, Design and synthesis of a selective chemosensor for Zn2+, Chin. J. Chem. 24 (2006) 1800-1803; (c) Q.H. Chen, J.L. Huang, Synthesis of novel zirconium complexes bearing mono- Cp and tridentate Schiff base [ONO] ligands and their catalytic activities for olefin polymerization, Appl. Organomet. Chem. 20 (2006) 758-765.[7] (a) F.S. Liu, Y.T. Huang, C. Lu, D.S. Shen, T. Cheng, Efficient salicylaldimine ligands for a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, Appl. Organomet. Chem. 26 (2012) 425-429; (b) N. Xie, Y. Chen, Design and synthesis of a selective chemosensor for Zn2+, Chin. J. Chem. 24 (2006) 1800-1803; (c) Q.H. Chen, J.L. Huang, Synthesis of novel zirconium complexes bearing mono- Cp and tridentate Schiff base [ONO] ligands and their catalytic activities for olefin polymerization, Appl. Organomet. Chem. 20 (2006) 758-765.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1509
  • HTML全文浏览量:  32
文章相关
  • 收稿日期:  2013-07-20
  • 网络出版日期:  2013-11-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章