Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands
English
Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands
-
Key words:
- Copper catalyst
- / Salicylaldimine ligands
- / Ullmann coupling
- / Diaryl ethers
-
-
-
[1] (a) J. Lindley, Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (b) F. Theil, Synthesis of diaryl ethers: a long-standing problem has been solved, Angew. Chem. Int. Ed. Engl. 38 (1999) 2345-2347; (c) J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065; (d) S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)- O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449; (e) K. Kunz, U. Scholz, D. Ganzer, Renaissance of Ullmann and Goldberg reactionsprogress in copper catalyzed C-N-, C-O- and C-S-coupling, Synlett 15 (2003) 2428-2439; (f) F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096- 3099.[1] (a) J. Lindley, Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (b) F. Theil, Synthesis of diaryl ethers: a long-standing problem has been solved, Angew. Chem. Int. Ed. Engl. 38 (1999) 2345-2347; (c) J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065; (d) S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)- O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449; (e) K. Kunz, U. Scholz, D. Ganzer, Renaissance of Ullmann and Goldberg reactionsprogress in copper catalyzed C-N-, C-O- and C-S-coupling, Synlett 15 (2003) 2428-2439; (f) F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096- 3099.
-
[2] (a) M.E. Jung, J.C. Rohloff, Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids, J. Org. Chem. 50 (1985) 4909-4913; (b) S.B. Singh, G.R. Pettit, Antineoplastic agents. 206. Structure of the cytostatic macrocyclic lactone combretastatin D-2, J. Org. Chem. 55 (1990) 2797-2800; (c) V.H. Deshpande, N.J. Gohkhale, Synthesis of combretastatin D-2, Tetrahedron Lett. 33 (1992) 4213-4216; (d) R. Nagarajan, D.A. Evans, K.M. DeViries, Glycopeptide Antibiotics (Drugs and the Pharmaceutical Sciences), Marcel Decker, New York, 1994, pp. 63-104; (e) S. Zenitani, S. Tashiro, K. Shindo, et al., A novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities, J. Antibiot. 56 (2003) 617-621; (f) P. Cristau, J.P. Vors, J.P. Zhu, Rapid and diverse route to natural product-like biaryl ether containing macrocycles, Tetrahedron 59 (2003) 7859-7870; (g) C.W. Qian, Y. Pang, D. Fang, Q.S. Zong, Synthesis and bioactivities of new triazole compounds containing aryl ether, Chin. J. Pestic. Sci. 15 (2013) 256-260.[2] (a) M.E. Jung, J.C. Rohloff, Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids, J. Org. Chem. 50 (1985) 4909-4913; (b) S.B. Singh, G.R. Pettit, Antineoplastic agents. 206. Structure of the cytostatic macrocyclic lactone combretastatin D-2, J. Org. Chem. 55 (1990) 2797-2800; (c) V.H. Deshpande, N.J. Gohkhale, Synthesis of combretastatin D-2, Tetrahedron Lett. 33 (1992) 4213-4216; (d) R. Nagarajan, D.A. Evans, K.M. DeViries, Glycopeptide Antibiotics (Drugs and the Pharmaceutical Sciences), Marcel Decker, New York, 1994, pp. 63-104; (e) S. Zenitani, S. Tashiro, K. Shindo, et al., A novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities, J. Antibiot. 56 (2003) 617-621; (f) P. Cristau, J.P. Vors, J.P. Zhu, Rapid and diverse route to natural product-like biaryl ether containing macrocycles, Tetrahedron 59 (2003) 7859-7870; (g) C.W. Qian, Y. Pang, D. Fang, Q.S. Zong, Synthesis and bioactivities of new triazole compounds containing aryl ether, Chin. J. Pestic. Sci. 15 (2013) 256-260.
-
[3] (a) G. Mann, J.F. Hartwig, Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(Ⅲ), J. Am. Chem. Soc. 118 (1996) 13109-13110; (b) M. Palucki, J.P. Wolfe, S.L. Buchwald, Synthesis of oxygen heterocycles via a palladium-catalyzed C-O bond-forming reaction, J. Am. Chem. Soc. 118 (1996) 10333-10334; (c) M. Palucki, J.P. Wolfe, S.L. Buchwald, Palladium-catalyzed intermolecular carbon-oxygen bond formation: a new synthesis of aryl ethers, J. Am. Chem. Soc. 119 (1997) 3395-3396; (d) A. Aranyos, D.W. Old, A. Kiyomori, et al., Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers, J. Am. Chem. Soc. 121 (1999) 4369-4378; (e) G. Mann, C. Incarvito, A.L. Rheigold, J.F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc. 121 (1999) 3224- 3225; (f) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566; (g) D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2046; (h) A.V. Vorogushin, X.H. Huang, S.L. Buchwald, Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation, J. Am. Chem. Soc. 127 (2005) 8146-8149; (i) C.H. Burgos, T.E. Barder, X.H. Huang, S.L. Buchwald, Significantly improved method for the palladium-catalyzed coupling of phenols with aryl halides: understanding ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 4321-4326.[3] (a) G. Mann, J.F. Hartwig, Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(Ⅲ), J. Am. Chem. Soc. 118 (1996) 13109-13110; (b) M. Palucki, J.P. Wolfe, S.L. Buchwald, Synthesis of oxygen heterocycles via a palladium-catalyzed C-O bond-forming reaction, J. Am. Chem. Soc. 118 (1996) 10333-10334; (c) M. Palucki, J.P. Wolfe, S.L. Buchwald, Palladium-catalyzed intermolecular carbon-oxygen bond formation: a new synthesis of aryl ethers, J. Am. Chem. Soc. 119 (1997) 3395-3396; (d) A. Aranyos, D.W. Old, A. Kiyomori, et al., Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers, J. Am. Chem. Soc. 121 (1999) 4369-4378; (e) G. Mann, C. Incarvito, A.L. Rheigold, J.F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc. 121 (1999) 3224- 3225; (f) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566; (g) D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2046; (h) A.V. Vorogushin, X.H. Huang, S.L. Buchwald, Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation, J. Am. Chem. Soc. 127 (2005) 8146-8149; (i) C.H. Burgos, T.E. Barder, X.H. Huang, S.L. Buchwald, Significantly improved method for the palladium-catalyzed coupling of phenols with aryl halides: understanding ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 4321-4326.
-
[4] F. Ullmann, The Ullmann condensation and the synthesis of diarylamines, Ber. Dtsch. Chem Ges. 36 (1903) 2382-2384.[4] F. Ullmann, The Ullmann condensation and the synthesis of diarylamines, Ber. Dtsch. Chem Ges. 36 (1903) 2382-2384.
-
[5] (a) J.F. Marcoux, S. Doye, S.L. Buchwald, A general copper-catalyzed synthesis of diarylethers, J. Am. Chem. Soc. 119 (1997) 10539-10540; (b) P.J. Fagan, E. Hauptman, R. Shapiro, A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, J. Am. Chem. Soc. 122 (2000) 5043-5051; (c) C.W. Qian, S.J. Xu, Q.S. Zong, D. Fang, Copper-catalyzed synthesis of triarylamines from aryl halides and arylamines, Chin. J. Chem. 30 (2012) 1881-1885; (d) E. Buck, Z.J. Song, D. Tschaen, et al., Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione, Org. Lett. 4 (2002) 1623- 1626; (e) D. Ma, Q. Cai, H. Zhang, N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides, Org. Lett. 5 (2003) 3799-3802; (f) Q. Cai, B. Zou, D.W. Ma, Mild Ullmann-type biaryl ether formation reaction by Combination of ortho-substituent and ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 1276-1279; (g) Q. Cai, G. He, D.W. Ma, Mild and nonracemizing conditions for Ullmann-type diaryl ether formation between aryl iodides and tyrosine derivatives, J. Org. Chem. 71 (2006) 5268-5273; (h) A. Ouali, J.F. Spindler, H.J. Cristau, M. Taillefer, Mild conditions for coppercatalyzed coupling reaction of phenols and aryl iodides and bromides, Adv. Synth. Catal. 348 (2006) 499-505; (i) H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Tailefer, A general and mild Ullmann-type synthesis of diaryl ethers, Org. Lett. 6 (2004) 913-916; (j) H.H. Rao, Y. Jin, H. Fu, Y.Y. Jiang, Y.F. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester, Chem. Eur. J. 12 (2006) 3636-3646; (k) C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Phosphazene P4-But base for the Ullmann biaryl ether synthesis, Chem. Commun. (1998) 2091-2092; (l) X. Lü, W.L. Bao, A b-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions, J. Org. Chem. 72 (2007) 3863-3867; (m) A.B. Naidu, O.R. Raghunath, D.J.C. Prasad, G. Sekar, An efficient BINAM-copper( II) catalyzed Ullmann-type synthesis of diaryl ethers, Tetrahedron Lett. 49 (2008) 1057-1061; (n) Y. Chen, H. Chen, 1,1,1-Tris (hydroxymethyl) ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett. 8 (2006) 5609-5612; (o) T. Miao, L. Wang, Immobilization of copper in organic-inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification, Tetrahedron Lett. 48 (2007) 95-99; (p) D.A. Evans, J.L. Katz, T.R. West, Synthesis of diaryl ethers through the copperpromoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine, Tetrahedron Lett. 39 (1998) 2937-2940; (q) Y. Zhao, Y. Wang, H. Sun, L. Li, H. Zhang, Ullmann reaction in tetraethyl orthosilicate: a novel synthesis of triarylamines and diaryl ethers, Chem. Commun. (2007) 3186-3188; (r) Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, (2-Pyridyl)acetone-promoted Cucatalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides, J. Org. Chem. 74 (2009) 7187-7190; (s) J.W.W. Chang, S. Chee, S. Maka, et al., Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 1: O-arylation of phenols with aryl halides, Tetrahedron Lett. 49 (2008) 2018-2022; (t) D. Maiti, S.L. Buchwald, Cu-catalyzed arylation of phenols: synthesis of sterically hindered and heteroaryl diaryl ethers, J. Org. Chem. 75 (2010) 1791-1794; (u) C.W. Qian, Q.S. Zong, D. Fang, Methenamine as an efficient ligand for coppercatalyzed coupling of phenols with aryl halides, Chin. J. Chem. 30 (2012) 199-203; (v) R.K. Gujadhur, C.G. Bates, D. Venkataraman, Formation of aryl-nitrogen, aryloxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts, Org. Lett. 3 (2001) 4315-4317; (w) R.K. Gujadhur, D. Venkataraman, Synthesis of diaryl ethers using an easy-toprepare, air- stable, soluble copper(I) catalyst, Synth. Commun. 31 (2001) 2865- 2879; (x) J.J. Niu, H. Zhou, Z.G. Li, J.W. Xu, S.J. Hu, An efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(I)-bipyridyl complex, J. Org. Chem. 73 (2008) 7814-7817.[5] (a) J.F. Marcoux, S. Doye, S.L. Buchwald, A general copper-catalyzed synthesis of diarylethers, J. Am. Chem. Soc. 119 (1997) 10539-10540; (b) P.J. Fagan, E. Hauptman, R. Shapiro, A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, J. Am. Chem. Soc. 122 (2000) 5043-5051; (c) C.W. Qian, S.J. Xu, Q.S. Zong, D. Fang, Copper-catalyzed synthesis of triarylamines from aryl halides and arylamines, Chin. J. Chem. 30 (2012) 1881-1885; (d) E. Buck, Z.J. Song, D. Tschaen, et al., Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione, Org. Lett. 4 (2002) 1623- 1626; (e) D. Ma, Q. Cai, H. Zhang, N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides, Org. Lett. 5 (2003) 3799-3802; (f) Q. Cai, B. Zou, D.W. Ma, Mild Ullmann-type biaryl ether formation reaction by Combination of ortho-substituent and ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 1276-1279; (g) Q. Cai, G. He, D.W. Ma, Mild and nonracemizing conditions for Ullmann-type diaryl ether formation between aryl iodides and tyrosine derivatives, J. Org. Chem. 71 (2006) 5268-5273; (h) A. Ouali, J.F. Spindler, H.J. Cristau, M. Taillefer, Mild conditions for coppercatalyzed coupling reaction of phenols and aryl iodides and bromides, Adv. Synth. Catal. 348 (2006) 499-505; (i) H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Tailefer, A general and mild Ullmann-type synthesis of diaryl ethers, Org. Lett. 6 (2004) 913-916; (j) H.H. Rao, Y. Jin, H. Fu, Y.Y. Jiang, Y.F. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester, Chem. Eur. J. 12 (2006) 3636-3646; (k) C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Phosphazene P4-But base for the Ullmann biaryl ether synthesis, Chem. Commun. (1998) 2091-2092; (l) X. Lü, W.L. Bao, A b-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions, J. Org. Chem. 72 (2007) 3863-3867; (m) A.B. Naidu, O.R. Raghunath, D.J.C. Prasad, G. Sekar, An efficient BINAM-copper( II) catalyzed Ullmann-type synthesis of diaryl ethers, Tetrahedron Lett. 49 (2008) 1057-1061; (n) Y. Chen, H. Chen, 1,1,1-Tris (hydroxymethyl) ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett. 8 (2006) 5609-5612; (o) T. Miao, L. Wang, Immobilization of copper in organic-inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification, Tetrahedron Lett. 48 (2007) 95-99; (p) D.A. Evans, J.L. Katz, T.R. West, Synthesis of diaryl ethers through the copperpromoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine, Tetrahedron Lett. 39 (1998) 2937-2940; (q) Y. Zhao, Y. Wang, H. Sun, L. Li, H. Zhang, Ullmann reaction in tetraethyl orthosilicate: a novel synthesis of triarylamines and diaryl ethers, Chem. Commun. (2007) 3186-3188; (r) Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, (2-Pyridyl)acetone-promoted Cucatalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides, J. Org. Chem. 74 (2009) 7187-7190; (s) J.W.W. Chang, S. Chee, S. Maka, et al., Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 1: O-arylation of phenols with aryl halides, Tetrahedron Lett. 49 (2008) 2018-2022; (t) D. Maiti, S.L. Buchwald, Cu-catalyzed arylation of phenols: synthesis of sterically hindered and heteroaryl diaryl ethers, J. Org. Chem. 75 (2010) 1791-1794; (u) C.W. Qian, Q.S. Zong, D. Fang, Methenamine as an efficient ligand for coppercatalyzed coupling of phenols with aryl halides, Chin. J. Chem. 30 (2012) 199-203; (v) R.K. Gujadhur, C.G. Bates, D. Venkataraman, Formation of aryl-nitrogen, aryloxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts, Org. Lett. 3 (2001) 4315-4317; (w) R.K. Gujadhur, D. Venkataraman, Synthesis of diaryl ethers using an easy-toprepare, air- stable, soluble copper(I) catalyst, Synth. Commun. 31 (2001) 2865- 2879; (x) J.J. Niu, H. Zhou, Z.G. Li, J.W. Xu, S.J. Hu, An efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(I)-bipyridyl complex, J. Org. Chem. 73 (2008) 7814-7817.
-
[6] (a) K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450; (b) R. Drozdzak, B. Allaert, N. Ledoux, et al., Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses, Coord. Chem. Rev. 249 (2005) 3055-3074; (c) L. Canali, D.C. Sherrington, Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis, Chem. Soc. Rev. 28 (1999) 85-93; (d) B.Y. Li, Y.R. Wang, Y.M. Yao, Y. Zhang, Q. Shen, Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands, J. Organomet. Chem. 694 (2009) 2409-2414; (e) J. Cui, M.J. Zhang, Y.W. Zhang, Amino-salicylaldimine-palladium(II) complexes: new and efficient catalysts for Suzuki and Heck reactions, Inorg. Chem. Commun. 13 (2010) 81-85; (f) W. Yang, H. Liu, D.M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction, Org. Biomol. Chem. 8 (2010) 2956-2960; (g) W. Yang, D.M. Du, Highly enantioselective Henry reaction catalyzed by C2- symmetricmodular BINOL-oxazoline Schiff base copper(II) complexes generated in situ, Eur. J. Org. Chem. 2011 (2011) 1552-1556.[6] (a) K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450; (b) R. Drozdzak, B. Allaert, N. Ledoux, et al., Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses, Coord. Chem. Rev. 249 (2005) 3055-3074; (c) L. Canali, D.C. Sherrington, Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis, Chem. Soc. Rev. 28 (1999) 85-93; (d) B.Y. Li, Y.R. Wang, Y.M. Yao, Y. Zhang, Q. Shen, Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands, J. Organomet. Chem. 694 (2009) 2409-2414; (e) J. Cui, M.J. Zhang, Y.W. Zhang, Amino-salicylaldimine-palladium(II) complexes: new and efficient catalysts for Suzuki and Heck reactions, Inorg. Chem. Commun. 13 (2010) 81-85; (f) W. Yang, H. Liu, D.M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction, Org. Biomol. Chem. 8 (2010) 2956-2960; (g) W. Yang, D.M. Du, Highly enantioselective Henry reaction catalyzed by C2- symmetricmodular BINOL-oxazoline Schiff base copper(II) complexes generated in situ, Eur. J. Org. Chem. 2011 (2011) 1552-1556.
-
[7] (a) F.S. Liu, Y.T. Huang, C. Lu, D.S. Shen, T. Cheng, Efficient salicylaldimine ligands for a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, Appl. Organomet. Chem. 26 (2012) 425-429; (b) N. Xie, Y. Chen, Design and synthesis of a selective chemosensor for Zn2+, Chin. J. Chem. 24 (2006) 1800-1803; (c) Q.H. Chen, J.L. Huang, Synthesis of novel zirconium complexes bearing mono- Cp and tridentate Schiff base [ONO] ligands and their catalytic activities for olefin polymerization, Appl. Organomet. Chem. 20 (2006) 758-765.[7] (a) F.S. Liu, Y.T. Huang, C. Lu, D.S. Shen, T. Cheng, Efficient salicylaldimine ligands for a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, Appl. Organomet. Chem. 26 (2012) 425-429; (b) N. Xie, Y. Chen, Design and synthesis of a selective chemosensor for Zn2+, Chin. J. Chem. 24 (2006) 1800-1803; (c) Q.H. Chen, J.L. Huang, Synthesis of novel zirconium complexes bearing mono- Cp and tridentate Schiff base [ONO] ligands and their catalytic activities for olefin polymerization, Appl. Organomet. Chem. 20 (2006) 758-765.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1509
- HTML全文浏览量: 32

下载: