氮掺杂石墨烯的制备及其对氧还原反应的电催化性能

彭三 郭慧林 亢晓峰

引用本文: 彭三, 郭慧林, 亢晓峰. 氮掺杂石墨烯的制备及其对氧还原反应的电催化性能[J]. 物理化学学报, 2014, 30(9): 1778-1786. doi: 10.3866/PKU.WHXB201407112 shu
Citation:  PENG San, GUO Hui-Lin, KANG Xiao-Feng. Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1778-1786. doi: 10.3866/PKU.WHXB201407112 shu

氮掺杂石墨烯的制备及其对氧还原反应的电催化性能

  • 基金项目:

    国家自然科学基金(21175105,21375104) 

    教育部高等学校博士学科点专项科研基金(20126101110015) 

    陕西省自然科学基金(2014JM2042) 

    生命分析化学国家重点实验室开放基金(SKLACLS1210)资助项目 

摘要:

以氧化石墨烯( )为原料、丙酮肟(DMKO)为还原剂和氮掺杂剂,采用化学还原法制备了不同氮掺杂含量的石墨烯(NG). 利用场发射透射电子显微镜(FETEM)、紫外-可见(UV-Vis)光谱、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、zeta 电位和纳米粒度分析、循环伏安(CV)和旋转圆盘电极(RDE)等手段对材料的形貌、结构、成分和电化学性质进行表征. 结果显示:DMKO能有效地还原 ,且通过调节 与DMKO的质量比,可以得到不同还原效果的NG,其氮含量范围为4.40%-5.89%(原子分数); 与DMKO的质量比为1:0.7时制备的氮掺杂石墨烯(NG-1)在O2饱和0.1 mol·L-1 KOH溶液中对氧还原反应(ORR)的电催化性能最佳,其ORR峰电流为0.93 mA·cm-2,电子转移数为3.6,这归因于其较高含量的吡啶-N增加了材料的ORR活性位点. 此外,石墨化-N由于其较高的电子导电性倾向于产生较高的氧还原峰电流,而吡啶-N较低的超电势倾向于产生较正的氧还原峰电位. 与商用Pt/C相比,该材料展现出了优异的抗CH3OH“跨界效应”的特性.

English

    1. [1]

      (1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

      (1) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115

    2. [2]

      (2) Yang, R.; Leisch, J.; Strasser, P.; Toney, M. F. Chem. Mater. 2010, 22, 4712. doi: 10.1021/cm101090p(2) Yang, R.; Leisch, J.; Strasser, P.; Toney, M. F. Chem. Mater. 2010, 22, 4712. doi: 10.1021/cm101090p

    3. [3]

      (3) Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902(3) Chen, A.; Holt-Hindle, P. Chem. Rev. 2010, 110, 3767. doi: 10.1021/cr9003902

    4. [4]

      (4) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012, 8, 3550.(4) Zheng, Y.; Jiao, Y.; Jaroniec, M.; Jin, Y.; Qiao, S. Z. Small 2012, 8, 3550.

    5. [5]

      (5) Zhang, L.; Zhang, J.;Wilkinson, D. P.;Wang, H. J. Power Sources 2006, 156, 171. doi: 10.1016/j.jpowsour.2005.05.069(5) Zhang, L.; Zhang, J.;Wilkinson, D. P.;Wang, H. J. Power Sources 2006, 156, 171. doi: 10.1016/j.jpowsour.2005.05.069

    6. [6]

      (6) Zhang, M.; Dai, L. Nano Energy, 2012, 1, 514. doi: 10.1016/j.nanoen.2012.02.008(6) Zhang, M.; Dai, L. Nano Energy, 2012, 1, 514. doi: 10.1016/j.nanoen.2012.02.008

    7. [7]

      (7) Nallathambi, V.; Lee, J.W.; Kumaraguru, S. P.;Wu, G.; Popov, B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020(7) Nallathambi, V.; Lee, J.W.; Kumaraguru, S. P.;Wu, G.; Popov, B. N. J. Power Sources 2008, 183, 34. doi: 10.1016/j.jpowsour.2008.05.020

    8. [8]

      (8) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812(8) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812

    9. [9]

      (9) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b(9) Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Nano Lett. 2008, 8, 2458. doi: 10.1021/nl801457b

    10. [10]

      (10) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58(10) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58

    11. [11]

      (11) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. doi: 10.1126/science.1137201(11) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. doi: 10.1126/science.1137201

    12. [12]

      (12) Balandin, A. A.; Ghosh, S.; Bao,W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872 doi: 10.1021/nl0731872(12) Balandin, A. A.; Ghosh, S.; Bao,W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8, 902. doi: 10.1021/nl0731872 doi: 10.1021/nl0731872

    13. [13]

      (13) Avouris, P.; Chen, Z.; Perebeinos, V. Nat. Nanotechnol. 2007, 2, 605. doi: 10.1038/nnano.2007.300(13) Avouris, P.; Chen, Z.; Perebeinos, V. Nat. Nanotechnol. 2007, 2, 605. doi: 10.1038/nnano.2007.300

    14. [14]

      (14) Wang, X.; Li, X.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang, H.; Guo, J.; Dai, H. Science 2009, 324, 768. doi: 10.1126/science.1170335(14) Wang, X.; Li, X.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang, H.; Guo, J.; Dai, H. Science 2009, 324, 768. doi: 10.1126/science.1170335

    15. [15]

      (15) Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L.; Xia, Z.; Dai, L.; Park, N.; Baek, J. B. Scientific Reports 2013, 3, 1810.(15) Jeon, I. Y.; Choi, H. J.; Choi, M.; Seo, J. M.; Jung, S. M.; Kim, M. J.; Zhang, S.; Zhang, L.; Xia, Z.; Dai, L.; Park, N.; Baek, J. B. Scientific Reports 2013, 3, 1810.

    16. [16]

      (16) Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c(16) Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. Energy Environ. Sci. 2011, 4, 760. doi: 10.1039/c0ee00326c

    17. [17]

      (17) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u(17) Qu, L.; Liu, Y.; Baek, J. B.; Dai, L. ACS Nano 2010, 4, 1321. doi: 10.1021/nn901850u

    18. [18]

      (18) Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491. doi: 10.1039/c0jm00782j(18) Shao, Y.; Zhang, S.; Engelhard, M. H.; Li, G.; Shao, G.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. J. Mater. Chem. 2010, 20, 7491. doi: 10.1039/c0jm00782j

    19. [19]

      (19) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t(19) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t

    20. [20]

      (20) Ma, G. X.; Zhao, J. H.; Zheng, J. F.; Zhu, Z. P. New Carbon Mater. 2012, 27, 258. [马贵香, 赵江红, 郑剑锋, 朱珍平. 新型炭材料, 2012, 27, 258.](20) Ma, G. X.; Zhao, J. H.; Zheng, J. F.; Zhu, Z. P. New Carbon Mater. 2012, 27, 258. [马贵香, 赵江红, 郑剑锋, 朱珍平. 新型炭材料, 2012, 27, 258.]

    21. [21]

      (21) Unni, S. M.; Devulapally, S.; Karjule, N.; Kurun t, S. J. Mater. Chem. 2012, 22, 23506. doi: 10.1039/c2jm35547g(21) Unni, S. M.; Devulapally, S.; Karjule, N.; Kurun t, S. J. Mater. Chem. 2012, 22, 23506. doi: 10.1039/c2jm35547g

    22. [22]

      (22) Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.v22.17(22) Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K. Adv. Funct. Mater. 2012, 22, 3634. doi: 10.1002/adfm.v22.17

    23. [23]

      (23) Li, N.;Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013(23) Li, N.;Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013

    24. [24]

      (24) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221(24) Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745. [苏鹏, 郭慧林, 彭三, 宁生科. 物理化学学报, 2012, 28, 2745.] doi: 10.3866/PKU.WHXB201208221

    25. [25]

      (25) Li, X.;Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f(25) Li, X.;Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f

    26. [26]

      (26) Su, P.; Guo, H. L.; Tian, L.; Ning, S. K. Carbon 2012, 50, 5351. doi: 10.1016/j.carbon.2012.07.001(26) Su, P.; Guo, H. L.; Tian, L.; Ning, S. K. Carbon 2012, 50, 5351. doi: 10.1016/j.carbon.2012.07.001

    27. [27]

      (27) Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s(27) Wang, Y.; Shao, Y.; Matson, D.W.; Li, J.; Lin, Y. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s

    28. [28]

      (28) Lin, Z.;Waller, G. H.; Liu, Y.; Liu, M.;Wong, C. P. Carbon 2013, 53, 130. doi: 10.1016/j.carbon.2012.10.039(28) Lin, Z.;Waller, G. H.; Liu, Y.; Liu, M.;Wong, C. P. Carbon 2013, 53, 130. doi: 10.1016/j.carbon.2012.10.039

    29. [29]

      (29) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.;Wu, G.; Lee, JW.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087(29) Subramanian, N. P.; Li, X.; Nallathambi, V.; Kumaraguru, S. P.; Colon-Mercado, H.;Wu, G.; Lee, JW.; Popov, B. N. J. Power Sources 2009, 188, 38. doi: 10.1016/j.jpowsour.2008.11.087

    30. [30]

      (30) Saidi,W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d(30) Saidi,W. A. J. Phys. Chem. Lett. 2013, 4, 4160. doi: 10.1021/jz402090d

    31. [31]

      (31) Lai, L.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.; ng, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j

      (31) Lai, L.; Potts, J. R.; Zhan, D.;Wang, L.; Poh, C. K.; Tang, C.; ng, H.; Shen, Z.; Lin, J.; Ruoff, R. S. Energy Environ. Sci. 2012, 5, 7936. doi: 10.1039/c2ee21802j

  • 加载中
计量
  • PDF下载量:  901
  • 文章访问数:  1252
  • HTML全文浏览量:  74
文章相关
  • 发布日期:  2014-08-29
  • 收稿日期:  2014-05-15
  • 网络出版日期:  2014-07-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章