Citation: CHEN Hong-Li, ZHU Shu-Yan, HE Jian-Qin, WANG Yi-Meng. Synthesis of Micro-Sized MEL-Type Zeolite Aggregates[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1727-1735. doi: 10.3866/PKU.WHXB201407081
微米级MEL分子筛聚集体的制备
使用四丁基氢氧化铵-正硅酸四乙酯-水(TBAOH-TEOS-H2O)简单体系一步水热制备了具有多级孔道的微米级MEL结构分子筛聚集体. 得到的silicalite-2 微米球直径大于10 μm且具有高达460 m2·g-1的比表面积和0.74 cm3·g-1的孔体积. 微米球的生成一定程度上解决了催化应用过程中催化剂的分离和回收问题. 同时,水热晶化过程中由纳米粒子自组装而成的晶间介孔缩短了反应物分子的扩散路径,保持了分子筛纳米晶粒的优势. 此外,钛活性位的引入并未明显影响MEL微米球的形貌和结构,含钛的MEL微米球TS(钛硅分子筛)-2在苯酚羟基化反应中具有与纳米尺寸TS-1(100-200 nm)相当的催化活性,且TS-2 可以通过简单过滤得到,简化了纳米级TS-1的分离和回收过程.
English
Synthesis of Micro-Sized MEL-Type Zeolite Aggregates
Hierarchical micro-sized zeolite aggregates with the MEL structure were prepared hydrothermally froma tetrabutylammoniumhydroxide (TBAOH)-tetraethyl orthosilicate (TEOS)-H2O system. The obtained microsized silicalite-2 microspheres had sizes larger than 10 μm, high BET surface area (460 m2·g-1), and large pore volume (0.74 cm3·g-1). The formation of micro-sized spheres alleviates preparation and application difficulties. The presence of inter-crystalline mesopores originating from the spontaneous assembly of nano-sized primary particles during hydrothermal synthesis gives the advantages of nanoparticles, reducing diffusion limitations. The introduction of titanium does not strongly affect the morphology and textural properties of the MEL-type zeolite, which are quite similar to those of silicalite-2 aggregates. The micro-sized titanium silicalite-2 (TS-2) microspheres showed comparable catalytic activity in phenol hydroxylation to that of titanium silicalite-1 (TS-1) of size 100-200 nm, and were easily recovered by traditional filtration, simplifying the separation and recovery compared with nano-sized TS-1.
-
Key words:
-
MEL structure
- / Nano-sized particle
- / Aggregate
- / Hierarchical porosity
- / Hydroxylation of phenol
-
-
[1]
(1) Corma, A. Chem. Rev. 1995, 95, 559. doi: 10.1021/cr00035a006
(1) Corma, A. Chem. Rev. 1995, 95, 559. doi: 10.1021/cr00035a006
-
[2]
(2) Rabo, J. A.; Schoonover, M.W. Appl. Catal. A: Gen. 2001, 222, 261. doi: 10.1016/S0926-860X(01)00840-7(2) Rabo, J. A.; Schoonover, M.W. Appl. Catal. A: Gen. 2001, 222, 261. doi: 10.1016/S0926-860X(01)00840-7
-
[3]
(3) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier,W. M. Nature 1978, 272, 437. doi: 10.1038/272437a0(3) Kokotailo, G. T.; Lawton, S. L.; Olson, D. H.; Meier,W. M. Nature 1978, 272, 437. doi: 10.1038/272437a0
-
[4]
(4) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246.(4) Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature 2009, 461, 246.
-
[5]
(5) Yue, M. B.; Yang, N.;Wang, Y. M. Acta Phys. -Chim. Sin. 2012, 28, 2115. [岳明波, 杨娜, 王一萌. 物理化学学报, 2012, 28, 2115.] doi: 10.3866/PKU.WHXB201206141(5) Yue, M. B.; Yang, N.;Wang, Y. M. Acta Phys. -Chim. Sin. 2012, 28, 2115. [岳明波, 杨娜, 王一萌. 物理化学学报, 2012, 28, 2115.] doi: 10.3866/PKU.WHXB201206141
-
[6]
(6) Kokotailo, G. T.; Chu, P.; Lawton, S. L.; Meier,W. M. Nature 1978, 275, 119. doi: 10.1038/275119a0(6) Kokotailo, G. T.; Chu, P.; Lawton, S. L.; Meier,W. M. Nature 1978, 275, 119. doi: 10.1038/275119a0
-
[7]
(7) Yu, Q. J.; Cui, C. Y.; Zhang, Q.; Chen, J.; Li, Y.; Sun, J. P.; Li, C. Y.; Cui, Q. K.; Yang, C. H.; Shan, H. H. J. Energy Chem. 2013, 22, 761. doi: 10.1016/S2095-4956(13)60101-1(7) Yu, Q. J.; Cui, C. Y.; Zhang, Q.; Chen, J.; Li, Y.; Sun, J. P.; Li, C. Y.; Cui, Q. K.; Yang, C. H.; Shan, H. H. J. Energy Chem. 2013, 22, 761. doi: 10.1016/S2095-4956(13)60101-1
-
[8]
(8) Chen, H. L.; Ding, J.;Wang, Y. M. New J. Chem. 2014, 38, 308. doi: 10.1039/c3nj00785e(8) Chen, H. L.; Ding, J.;Wang, Y. M. New J. Chem. 2014, 38, 308. doi: 10.1039/c3nj00785e
-
[9]
(9) Babu, G. P.; Hegde, S. G.; Kulkarni, S. B.; Ratnasamy, P. J. Catal. 1983, 81, 471. doi: 10.1016/0021-9517(83)90185-9(9) Babu, G. P.; Hegde, S. G.; Kulkarni, S. B.; Ratnasamy, P. J. Catal. 1983, 81, 471. doi: 10.1016/0021-9517(83)90185-9
-
[10]
(10) Kaeding,W.W.; Chu, C.; Young, L. B.; Butter, S. A. J. Catal. 1981, 69, 392.(10) Kaeding,W.W.; Chu, C.; Young, L. B.; Butter, S. A. J. Catal. 1981, 69, 392.
-
[11]
(11) Young, L. B.; Butter, S. A.; Kaeding,W.W. J. Catal. 1982, 76, 418. doi: 10.1016/0021-9517(82)90271-8(11) Young, L. B.; Butter, S. A.; Kaeding,W.W. J. Catal. 1982, 76, 418. doi: 10.1016/0021-9517(82)90271-8
-
[12]
(12) Ralph, M, D. J. Catal. 1982, 77, 304. doi: 10.1016/0021-9517(82)90173-7(12) Ralph, M, D. J. Catal. 1982, 77, 304. doi: 10.1016/0021-9517(82)90173-7
-
[13]
(13) Védrine, J. C.; Auroux, A.; Dejaifve, P.; Ducarme, V.; Hoser, H.; Zhou, S. J. Catal. 1982, 73, 147. doi: 10.1016/0021-9517(82)90089-6(13) Védrine, J. C.; Auroux, A.; Dejaifve, P.; Ducarme, V.; Hoser, H.; Zhou, S. J. Catal. 1982, 73, 147. doi: 10.1016/0021-9517(82)90089-6
-
[14]
(14) Anderson, J. R.; Foger, K.; Mole, T.; Rajadhyaksha, R. A.; Sanders, J. V. J. Catal. 1979, 58, 114. doi: 10.1016/0021-9517(79)90250-1(14) Anderson, J. R.; Foger, K.; Mole, T.; Rajadhyaksha, R. A.; Sanders, J. V. J. Catal. 1979, 58, 114. doi: 10.1016/0021-9517(79)90250-1
-
[15]
(15) Chang, C. D.; Silvestri, A. J. J. Catal. 1977, 47, 249. doi: 10.1016/0021-9517(77)90172-5(15) Chang, C. D.; Silvestri, A. J. J. Catal. 1977, 47, 249. doi: 10.1016/0021-9517(77)90172-5
-
[16]
(16) Meisel, S. L. Chem. Technol. 1976, 6, 86.(16) Meisel, S. L. Chem. Technol. 1976, 6, 86.
-
[17]
(17) Corma, A. Chem. Rev. 1997, 97, 2373. doi: 10.1021/cr960406n(17) Corma, A. Chem. Rev. 1997, 97, 2373. doi: 10.1021/cr960406n
-
[18]
(18) Tian, Y.; Li, Y. D. Journal of Chemical Industry and Engineering 2013, 64 (2), 393. [田野, 李永丹. 化工学报, 2013, 64 (2), 393.](18) Tian, Y.; Li, Y. D. Journal of Chemical Industry and Engineering 2013, 64 (2), 393. [田野, 李永丹. 化工学报, 2013, 64 (2), 393.]
-
[19]
(19) Song,W.; Justice, R. E.; Jones, C. A.; Grassian, V. H.; Larsen, S. C. Langmuir 2004, 20, 8301. doi: 10.1021/la049516c(19) Song,W.; Justice, R. E.; Jones, C. A.; Grassian, V. H.; Larsen, S. C. Langmuir 2004, 20, 8301. doi: 10.1021/la049516c
-
[20]
(20) Tosheva, L.; Valtchev, V. P. Chem. Mater. 2005, 17, 2494. doi: 10.1021/cm047908z(20) Tosheva, L.; Valtchev, V. P. Chem. Mater. 2005, 17, 2494. doi: 10.1021/cm047908z
-
[21]
(21) Tokay, B.; Somer, M.; Erdem-Senatalar, A.; Schuth, F.; Thompson, R.W. Microporous Mesoporous Mat. 2009, 118, 143. doi: 10.1016/j.micromeso.2008.08.034(21) Tokay, B.; Somer, M.; Erdem-Senatalar, A.; Schuth, F.; Thompson, R.W. Microporous Mesoporous Mat. 2009, 118, 143. doi: 10.1016/j.micromeso.2008.08.034
-
[22]
(22) Cundy, C. S.; Forrest, J. O.; Plaisted, R. J. Microporous Mesoporous Mat. 2003, 66, 143. doi: 10.1016/j.micromeso.2003.08.021(22) Cundy, C. S.; Forrest, J. O.; Plaisted, R. J. Microporous Mesoporous Mat. 2003, 66, 143. doi: 10.1016/j.micromeso.2003.08.021
-
[23]
(23) Cundy, C. S.; Forrest, J. O. Microporous Mesoporous Mat. 2004, 72, 67. doi: 10.1016/j.micromeso.2004.04.006(23) Cundy, C. S.; Forrest, J. O. Microporous Mesoporous Mat. 2004, 72, 67. doi: 10.1016/j.micromeso.2004.04.006
-
[24]
(24) Mintova, S.; Gilson, J. P.; Valtchev, V. Nanoscale 2013, 15, 6693.(24) Mintova, S.; Gilson, J. P.; Valtchev, V. Nanoscale 2013, 15, 6693.
-
[25]
(25) Davis, T. M.; Drews, T. O.; Ramanan, H.; He, C.; Dong, J.; Schnablegger, H.; Katsoulakis, M. A.; Kokkoli, E.; McCormick, A. V.; Penn, R. L.; Tsapatsis, M. Nature Mater. 2006, 5, 400. doi: 10.1038/nmat1636(25) Davis, T. M.; Drews, T. O.; Ramanan, H.; He, C.; Dong, J.; Schnablegger, H.; Katsoulakis, M. A.; Kokkoli, E.; McCormick, A. V.; Penn, R. L.; Tsapatsis, M. Nature Mater. 2006, 5, 400. doi: 10.1038/nmat1636
-
[26]
(26) Fang, Y. M.; Hu, H. Q.; Chen, G. H. Chem. Mater. 2008, 20, 1670. doi: 10.1021/cm703265q(26) Fang, Y. M.; Hu, H. Q.; Chen, G. H. Chem. Mater. 2008, 20, 1670. doi: 10.1021/cm703265q
-
[27]
(27) Liu, S. P.; Yue, M. B.;Wang, Y. M. Acta Phys. -Chim. Sin. 2010, 26, 2224. [刘树萍, 岳明波, 王一萌. 物理化学学报, 2010, 26, 2224.] doi: 10.3866/PKU.WHXB20100806(27) Liu, S. P.; Yue, M. B.;Wang, Y. M. Acta Phys. -Chim. Sin. 2010, 26, 2224. [刘树萍, 岳明波, 王一萌. 物理化学学报, 2010, 26, 2224.] doi: 10.3866/PKU.WHXB20100806
-
[28]
(28) Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; AlWahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684. doi: 10.1126/science.1221111(28) Zhang, X. Y.; Liu, D. X.; Xu, D. D.; Asahina, S.; Cychosz, K. A.; Agrawal, K. V.; AlWahedi, Y.; Bhan, A.; Al Hashimi, S.; Terasaki, O.; Thommes, M.; Tsapatsis, M. Science 2012, 336, 1684. doi: 10.1126/science.1221111
-
[29]
(29) Dong, J. P.; Zou, J.; Long, Y. C. Microporous Mesoporous Mat. 2003, 57, 9. doi: 10.1016/S1387-1811(02)00530-9(29) Dong, J. P.; Zou, J.; Long, Y. C. Microporous Mesoporous Mat. 2003, 57, 9. doi: 10.1016/S1387-1811(02)00530-9
-
[30]
(30) Uzcategui, D.; nzalez, G. Catal. Today 2005, 107-108, 901.(30) Uzcategui, D.; nzalez, G. Catal. Today 2005, 107-108, 901.
-
[31]
(31) CiZmek, A.; Subotica, B.; Kralj, D.; Babic-Ivancic, V.; Tonejc, A. Microporous Mater. 1997, 12, 267. doi: 10.1016/S0927-6513(97)00075-8(31) CiZmek, A.; Subotica, B.; Kralj, D.; Babic-Ivancic, V.; Tonejc, A. Microporous Mater. 1997, 12, 267. doi: 10.1016/S0927-6513(97)00075-8
-
[32]
(32) Mintova , S.; Petkov, N.; Karaghiosoff, K.; Bein, T. Microporous Mesoporous Mat. 2003, 50, 121.(32) Mintova , S.; Petkov, N.; Karaghiosoff, K.; Bein, T. Microporous Mesoporous Mat. 2003, 50, 121.
-
[33]
(33) Jansen, J. C.; van der Gaag, F. J.; van Bekkum, H. Zeolites 1984, 4, 369. doi: 10.1016/0144-2449(84)90013-7(33) Jansen, J. C.; van der Gaag, F. J.; van Bekkum, H. Zeolites 1984, 4, 369. doi: 10.1016/0144-2449(84)90013-7
-
[34]
(34) Coudurier, G.; Naccache, C.; Vedrine, J. C. J. Chem. Soc. Chem. Commun. 1982, 1413.(34) Coudurier, G.; Naccache, C.; Vedrine, J. C. J. Chem. Soc. Chem. Commun. 1982, 1413.
-
[35]
(35) Scarano, D.; Zecchina, A.; Bordiga, S.; Geobaldo, F.; Spoto, G.; Petrini, G.; Leofanti, G.; Padovan, M.; Tozzola, G. J. Chem. Soc. Faraday Trans. 1993, 89, 4123. doi: 10.1039/ft9938904123(35) Scarano, D.; Zecchina, A.; Bordiga, S.; Geobaldo, F.; Spoto, G.; Petrini, G.; Leofanti, G.; Padovan, M.; Tozzola, G. J. Chem. Soc. Faraday Trans. 1993, 89, 4123. doi: 10.1039/ft9938904123
-
[36]
(36) Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. J. Phys. Chem. 1992, 96, 4985. doi: 10.1021/j100191a047(36) Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. J. Phys. Chem. 1992, 96, 4985. doi: 10.1021/j100191a047
-
[37]
(37) Soulard, M.; Bilger, S.; Kessler, H.; Guth, J. L. Zeolites 1987, 7, 463. doi: 10.1016/0144-2449(87)90016-9(37) Soulard, M.; Bilger, S.; Kessler, H.; Guth, J. L. Zeolites 1987, 7, 463. doi: 10.1016/0144-2449(87)90016-9
-
[38]
(38) Parker, L. M.; Bibby, D. M.; Patterson, J. E. Zeolites 1984, 4, 168. doi: 10.1016/0144-2449(84)90056-3(38) Parker, L. M.; Bibby, D. M.; Patterson, J. E. Zeolites 1984, 4, 168. doi: 10.1016/0144-2449(84)90056-3
-
[39]
(39) Boxhoorn, G.; Kortbeek, A. G. T. G.; Hays, G. R.; Alma, N. C. M. Zeolites 1984, 4, 15. doi: 10.1016/0144-2449(84)90066-6(39) Boxhoorn, G.; Kortbeek, A. G. T. G.; Hays, G. R.; Alma, N. C. M. Zeolites 1984, 4, 15. doi: 10.1016/0144-2449(84)90066-6
-
[40]
(40) Chezeau, J. M.; Delmotte, L.; Guth, J. L.; Gabelica, Z. Zeolites 1991, 11, 598. doi: 10.1016/S0144-2449(05)80011-9(40) Chezeau, J. M.; Delmotte, L.; Guth, J. L.; Gabelica, Z. Zeolites 1991, 11, 598. doi: 10.1016/S0144-2449(05)80011-9
-
[41]
(41) Nagy, J. B.; Gabelica, Z.; Derouane, E. G. Chem. Lett. 1982, 11, 1105.(41) Nagy, J. B.; Gabelica, Z.; Derouane, E. G. Chem. Lett. 1982, 11, 1105.
-
[42]
(42) Nagy, J. B.; Gabelica, Z.; Derouane, E. G. Zeolites 1983, 3, 43. doi: 10.1016/0144-2449(83)90084-2(42) Nagy, J. B.; Gabelica, Z.; Derouane, E. G. Zeolites 1983, 3, 43. doi: 10.1016/0144-2449(83)90084-2
-
[43]
(43) Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spanò, G.; Rivetti, F.; Zecchina, A. J. Am. Chem. Soc. 2001, 123, 11409. doi: 10.1021/ja010607v(43) Ricchiardi, G.; Damin, A.; Bordiga, S.; Lamberti, C.; Spanò, G.; Rivetti, F.; Zecchina, A. J. Am. Chem. Soc. 2001, 123, 11409. doi: 10.1021/ja010607v
-
[44]
(44) Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B 2001, 105, 2897.(44) Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B 2001, 105, 2897.
-
[45]
(45) Thangaraj, A.; Kumar, R.; Mirajkar, S. P.; Ratnasamy, P. J. Catal. 1991, 130, 1. doi: 10.1016/0021-9517(91)90086-J(45) Thangaraj, A.; Kumar, R.; Mirajkar, S. P.; Ratnasamy, P. J. Catal. 1991, 130, 1. doi: 10.1016/0021-9517(91)90086-J
-
[46]
(46) Thangaraj, A.; Kumar, R.; Ratnasamy, P. J. Catal. 1991, 131, 294. doi: 10.1016/0021-9517(91)90347-7(46) Thangaraj, A.; Kumar, R.; Ratnasamy, P. J. Catal. 1991, 131, 294. doi: 10.1016/0021-9517(91)90347-7
-
[47]
(47) Romano, U.; Esposito, A.; Maspero, F.; Neri, C.; Clerici, M. G. Stud. Surf. Sci. Catal. 1990, 55, 33. doi: 10.1016/S0167-2991(08)60131-7(47) Romano, U.; Esposito, A.; Maspero, F.; Neri, C.; Clerici, M. G. Stud. Surf. Sci. Catal. 1990, 55, 33. doi: 10.1016/S0167-2991(08)60131-7
-
[48]
(48) Tuel, A.; Taarit, Y. B. Appl. Catal. A: Gen. 1993, 102, 69. doi: 10.1016/0926-860X(93)85155-I(48) Tuel, A.; Taarit, Y. B. Appl. Catal. A: Gen. 1993, 102, 69. doi: 10.1016/0926-860X(93)85155-I
-
[49]
(49) van der Pol, A. J. H. P.; Verduyn, A. J.; van Hooff, J. H. C. Appl. Catal. A: Gen. 1992, 92, 113. doi: 10.1016/0926-860X(92)80310-9
(49) van der Pol, A. J. H. P.; Verduyn, A. J.; van Hooff, J. H. C. Appl. Catal. A: Gen. 1992, 92, 113. doi: 10.1016/0926-860X(92)80310-9
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 385
- 文章访问数: 832
- HTML全文浏览量: 20

下载: