Citation: GUO Li-Mei, KUANG Yuan-Jiang, YANG Xiao-Dan, YU Yan-Long, YAO Jiang-Hong, CAO Ya-An. Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst[J]. Acta Physico-Chimica Sinica, 2013, 29(02): 397-402. doi: 10.3866/PKU.WHXB201211161
偏硼酸锶催化剂光催化还原CO2合成CH4
采用溶胶-凝胶法制备出偏硼酸锶(SrB2O4)光催化剂. 紫外光催化还原CO2合成CH4(在液相水中)的实验证明: SrB2O4催化剂的光催化活性略高于TiO2(P25). 利用X射线电子衍射谱(XRD)、傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、荧光(PL)光谱和紫外-可见(UV-Vis)漫反射吸收光谱等技术, 研究了SrB2O4 催化剂的晶体结构、形貌和能带结构. 结果表明: SrB2O4 的价带为2.07 V (vs normalhydrogen electrode (NHE)), 低于(H2O/H+)的氧化还原电位Eredoxo (0.82 V (vs NHE)); 而导带为-1.47 V (vsNHE), 高于(CO2/CH4)的氧化还原电位Eredoxo (-0.24 V (vs NHE)). 因此, SrB2O4催化剂可以有效地光催化还原CO2生成CH4. 与TiO2(P25)相比, SrB2O4催化剂具有相对较高导带, 光生电子的还原能力强于TiO2(P25), 更有利于CH4的生成, 从而决定了SrB2O4催化剂光催化还原CO2合成CH4具有较高的光催化活性.
English
Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst
The reduction of carbon dioxide to methane in the presence of water was used to evaluate the photocatalytic activity of a prepared strontium metaborate catalyst. The strontium metaborate (SrB2O4) was prepared by a simple sol-gel method, and was shown to exhibit better photocatalytic performance than TiO2 (P25) under UV-light irradiation. The structure, morphology, and energy levels of the photocatalysts were studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy, and UV-Vis diffuse reflectance absorption spectroscopy. It was revealed that the SrB2O4 valence band (VB) was located at 2.07 V (vs normal hydrogen electrode, NHE), which is more positive than Eredoxo (H2O/H+) (0.82 V (vs NHE)); the conduction band was estimated to be -1.47 V (vs NHE)), which is more negative than Eredoxo (CO2/CH4) (-0.24 V (vs NHE)). Therefore, it is clear that strontium metaborate is capable of transforming CO2 into CH4. Moreover, the potential at the bottom of the conduction band for SrB2O4 is more negative than that for TiO2(P25), leading to a higher deoxidization capacity, which also favors CH4 formation. Thus, SrB2O4 exhibits a higher photocatalytic activity than TiO2(P25).
-
Key words:
-
Strontium metaborate
- / Photocatalytic reduction of CO2
- / CH4
- / Redox potential
- / Photocatalytic activity
-
-
[1]
(1) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
(1) Lo, C. C.; Hung, C. H.; Yuan, C. S.;Wu, J. F. Sol. Energy Mater. Sol. Cells 2007, 91, 1765. doi: 10.1016/j.solmat.2007.06.003
-
[2]
(2) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u(2) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
-
[3]
(3) Tseng, I. H.; Chang,W. C.;Wu, J. Appl. Catal. B: Environ.2002, 37, 37. doi: 10.1016/S0926-3373(01)00322-8(3) Tseng, I. H.; Chang,W. C.;Wu, J. Appl. Catal. B: Environ.2002, 37, 37. doi: 10.1016/S0926-3373(01)00322-8
-
[4]
(4) Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.;Wang, Z.; Ma, L. L.Carbon 2007, 45, 717. doi: 10.1016/j.carbon.2006.11.028(4) Xia, X. H.; Jia, Z. J.; Yu, Y.; Liang, Y.;Wang, Z.; Ma, L. L.Carbon 2007, 45, 717. doi: 10.1016/j.carbon.2006.11.028
-
[5]
(5) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p(5) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[6]
(6) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105,8350. doi: 10.1021/jp010885g(6) Ikeue, K.; Yamashita, H.; Anpo, M. J. Phys. Chem. B 2001, 105,8350. doi: 10.1021/jp010885g
-
[7]
(7) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p(7) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[8]
(8) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2006, 115, 269. doi: 10.1016/j.cattod.2006.02.057(8) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2006, 115, 269. doi: 10.1016/j.cattod.2006.02.057
-
[9]
(9) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2008, 131, 125. doi: 10.1016/j.cattod.2007.10.011(9) Tan, S. S.; Zou, L. D.; Hu, E. Catal. Today 2008, 131, 125. doi: 10.1016/j.cattod.2007.10.011
-
[10]
(10) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032(10) Wang, C.; Thompson, R. L.; Baltrus, J.; Matranga, C. J. Phys. Chem. Lett. 2010, 1, 48. doi: 10.1021/jz9000032
-
[11]
(11) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006(11) Pan, P.W.; Chen, Y.W. Catal. Commun. 2007, 8, 1546. doi: 10.1016/j.catcom.2007.01.006
-
[12]
(12) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596(12) Liu, Q.; Zhou, Y.; Kou, J. H.; Chen, X. Y.; Tian, Z. P.; Gao, J.;Yan, S. C.; Zou, Z. G. J. Am. Chem. Soc. 2010, 132, 14385. doi: 10.1021/ja1068596
-
[13]
(13) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan,X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angew. Chem. 2010, 122, 6544. doi: 10.1002/ange.201003270(13) Yan, S. C.; Ouyang, S. X.; Gao, J.; Yang, M.; Feng, J. Y.; Fan,X. X.;Wan, L. J.; Li, Z. S.; Ye, J. H.; Zhou, Y.; Zou, Z. G.Angew. Chem. 2010, 122, 6544. doi: 10.1002/ange.201003270
-
[14]
(14) Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.;Fu, X. Z.; Li, Z. H. Angew. Chem. Int. Edit. 2012, 124, 3420.(14) Fu, Y. H.; Sun, D. R.; Chen, Y. J.; Huang, R. K.; Ding, Z. X.;Fu, X. Z.; Li, Z. H. Angew. Chem. Int. Edit. 2012, 124, 3420.
-
[15]
(15) Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Kawaguchi, N.; Fukuda,K.; Totsuka, D.;Watanab, K.; Yamazaki, A.; Yoshikawa, A. Opt. Mater. 2011, 34, 444. doi: 10.1016/j.optmat.2011.04.016(15) Fujimoto, Y.; Yanagida, T.; Yokota, Y.; Kawaguchi, N.; Fukuda,K.; Totsuka, D.;Watanab, K.; Yamazaki, A.; Yoshikawa, A. Opt. Mater. 2011, 34, 444. doi: 10.1016/j.optmat.2011.04.016
-
[16]
(16) Li, R.; Bao, L. H.; Li, X. D. CrystEngComm 2011, 13, 5858.doi: 10.1039/c1ce05537b(16) Li, R.; Bao, L. H.; Li, X. D. CrystEngComm 2011, 13, 5858.doi: 10.1039/c1ce05537b
-
[17]
(17) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith,S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009,131, 12868. doi: 10.1021/ja903463q(17) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith,S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. J. Am. Chem. Soc. 2009,131, 12868. doi: 10.1021/ja903463q
-
[18]
(18) Xu, J. H.; Dai,W. L.; Li, J. X.; Cao, Y.; Li, H. X.; He, H. Y.;Fan, K. N. Catal. Commun. 2008, 9, 146. doi: 10.1016/j.catcom.2007.05.043(18) Xu, J. H.; Dai,W. L.; Li, J. X.; Cao, Y.; Li, H. X.; He, H. Y.;Fan, K. N. Catal. Commun. 2008, 9, 146. doi: 10.1016/j.catcom.2007.05.043
-
[19]
(19) Li, R.; Tao, X. Y.; Li, X. D. J. Mater. Chem. 2009, 19, 983. doi: 10.1039/b816518a(19) Li, R.; Tao, X. Y.; Li, X. D. J. Mater. Chem. 2009, 19, 983. doi: 10.1039/b816518a
-
[20]
(20) Cao, Y. Q.; He, T.; Chen, Y. M.; Cao, Y. A. J. Phys. Chem. C2010, 114, 3627. doi: 10.1021/jp100786x(20) Cao, Y. Q.; He, T.; Chen, Y. M.; Cao, Y. A. J. Phys. Chem. C2010, 114, 3627. doi: 10.1021/jp100786x
-
[21]
(21) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p(21) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2596. doi: 10.1021/cm049099p
-
[22]
(22) Serpone, N.; Lawless, D. Khairutdinov, R. J. Phys. Chem. 1995,99, 16655. doi: 10.1021/j100045a027(22) Serpone, N.; Lawless, D. Khairutdinov, R. J. Phys. Chem. 1995,99, 16655. doi: 10.1021/j100045a027
-
[23]
(23) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Lu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v(23) Yu, J. C.; Ho,W.; Yu, J.; Hark, S. K.; Lu, K. Langmuir 2003, 19,3889. doi: 10.1021/la025775v
-
[24]
(24) Saraf, L. V.; Patil, S. I.; Ogale, S. B. Int. J. Mod. Phys. B 1998,12, 2635. doi: 10.1142/S0217979298001538(24) Saraf, L. V.; Patil, S. I.; Ogale, S. B. Int. J. Mod. Phys. B 1998,12, 2635. doi: 10.1142/S0217979298001538
-
[25]
(25) Yuan, J. X.;Wu, Q.; Zhang, P.; Yao, J. H.; He, T.; Cao, Y. A.Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k(25) Yuan, J. X.;Wu, Q.; Zhang, P.; Yao, J. H.; He, T.; Cao, Y. A.Environ. Sci. Technol. 2012, 46, 2330. doi: 10.1021/es203333k
-
[26]
(26) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2588. doi: 10.1021/cm049100k(26) Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Chem. Mater. 2005,17, 2588. doi: 10.1021/cm049100k
-
[27]
(27) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p(27) Varghese, O. K.; Paulose, M.; LaTempa, T. J.; Grimes, C. A.Nano Lett. 2009, 9, 731. doi: 10.1021/nl803258p
-
[28]
(28) Izumi, Y. Coord. Chem. Rev. 2012, 10, 1016.(28) Izumi, Y. Coord. Chem. Rev. 2012, 10, 1016.
-
[29]
(29) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H. Y.; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
(29) Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.;Gray, K. A.; He, H. Y.; Zapol, P. J. Am. Chem. Soc. 2011, 133,3964. doi: 10.1021/ja108791u
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 1041
- 文章访问数: 2063
- HTML全文浏览量: 56

下载: