含苯并噻唑的4-氨基喹唑啉衍生物的合成及抗肿瘤活性研究

张路野 张洋 汪正捷 王涛 刘丽敏 刘秀娟 李二冬 宋攀攀 郑甲信 可钰 单丽红 刘宏民 张秋荣

引用本文: 张路野, 张洋, 汪正捷, 王涛, 刘丽敏, 刘秀娟, 李二冬, 宋攀攀, 郑甲信, 可钰, 单丽红, 刘宏民, 张秋荣. 含苯并噻唑的4-氨基喹唑啉衍生物的合成及抗肿瘤活性研究[J]. 有机化学, 2020, 40(7): 1967-1974. doi: 10.6023/cjoc201902036 shu
Citation:  Zhang Luye, Zhang Yang, Wang Zhengjie, Wang Tao, Liu Limin, Liu Xiujuan, Li Erdong, Song Panpan, Zheng Jiaxin, Ke Yu, Shan Lihong, Liu Hongmin, Zhang Qiurong. Synthesis and Antitumor Activity of Novel 4-Aminoquinazoline Derivatives Containing Benzothiazole[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 1967-1974. doi: 10.6023/cjoc201902036 shu

含苯并噻唑的4-氨基喹唑啉衍生物的合成及抗肿瘤活性研究

    通讯作者: E-mail: iuhm@zzu.edu.cn; E-mail: zqr409@yeah.net; shlh@zzu.edu.cn
  • 基金项目:

    国家自然科学基金(No.U1904163)、蛋白关键研究(No.2018YFE0195100)和省部共建食管癌防治国家重点实验室资助的开放基金(No.K2020000X)资助项目

摘要: 为了寻找高效低毒的抗肿瘤药物,设计并合成了一系列新型的含苯并噻唑结构的4-氨基喹唑啉类衍生物,并采用噻唑蓝(MTT)法测定了目标化合物对人乳腺癌细胞系(MCF-7)、人胃癌细胞系(MGC-803)、人前列腺癌细胞系(PC-3)和人高度分化的胃癌细胞系(HGC-27)四种肿瘤细胞的抗增殖活性.结果显示大部分化合物具有较好的抗肿瘤活性,其中2-((苯并[d]噻唑-2-基甲基)硫亚基)-N-(3-氯-4-氟苯基)-喹唑啉-4-胺(13n)对MCF-7、MGC-803、PC-3和HGC-27四种细胞显示出最好的抗增殖活性,IC50值分别为(6.01±0.54),(7.63±0.48),(6.16±0.34)和(7.59±0.62)μmol·L-1,其活性均优于阳性对照物吉非替尼.分子对接结果显示化合物13n能与表皮生长因子受体(EGFR)很好地结合,为抗肿瘤药物的研究提供了线索.

English

  • The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases and plays a crucial role in cell proliferation, survival and differentiation via activation of downstream signaling pathways.[1-2]

    Quinazoline derivatives are important nitrogen- containing heterocycles[3] with a variety of pharmacological properties such as antimalarial, [4-5] antibacterial, [6-7] anti- inflammatory, [8-9] anticonvulsant, [10-11] antihypertensive, [12] anti-diabetic, [13] cholinesterase inhibition[14-15] and antitumor.[16-17] Meanwhile, it can specifically block the auto-phosphorylation of the epidermal growth factor receptor and inhibit the epidermal growth factor receptor or its tyrosine kinase ultimately.[18-19] Remarkable progress has been made in recent years, and researchers have found that 4-aminoquinazoline plays an important role in inhibiting epidermal growth factor receptor tyrosine kinase.[20] Some of the drugs with 4-aminoquinazolineare are effective for the treatment of Non-Small Cell Lung Cancers (NSCLCs) such as erlotinib, gefitinib, lapatinib, afatinib (Figure 1).[21]

    图 1

    Figure 1.  Structures of some 4-aminoquinazoline derivatives and derivatives containing benzothiazole

    Benzothiazole is an important benzo five-membered heterocyic ring, which was discovered in 1880. Benzothiazole derivatives have a variety of biological activities, such as deworming, [22] ntiviral, [23-24] analgesia, [25-26] anti- tu- mor, [27-28] anti-bacterial, [29-30] anti-inflammatory, [31-32] anti- tuberculosis[33] and anti-malarial.[34] In 2015, Cai et al.[35] reported that compounds 5~7 containing benzothiazole had strong cytotoxic effect against six human cancer cell lines. Xie et al.[36] reported that compound 8 had strong cytotoxic effect against A549 with IC50 value of 0.45 μmol•L-1 and benzothiazole was the key pharmacophore for the enhancement of antitumor activity (Figure 1). So, benzothiazole plays an indispensable role in pharmaceutical chemistry.

    Therefore, a series of 4-aminoquinazoline derivatives containing benzothiazole by using the combination principles were synthesized and the antiproliferative activity of target compounds was evaluated in vitro by methyl thiazolyl tetrazolium (MTT) assay.

    The synthetic strategy to prepare the target compounds is depicted in Scheme 2. Firstly, The compound 10 was synthesized by the reaction of 2-aminobenzamide with carbon disulfide in the presence of KOH in ethanol at 90 ℃. Then compound 11 was acquired from the reaction of compound 10 with 2-(chloromethyl)-benzothiazole under basic condi- tion in the mixture of H2O and acetone at 90 ℃. Next, phosphorus oxychloride was added to compound 11 and the temperature was slowly raised to 70 ℃ and kept for 1 h to obtained compound 12. Finally, compound 12 and appropriate anilines were added to N, N-dimethylformamide (DMF) and the temperature was raised to 90 ℃ for 2 h to get the target compounds 13a~13t. The structures of target compounds were confirmed by 1H NMR, 13C NMR and HRMS.

    图 1

    Figure 1.  Synthesis of compounds 13a~13t

    Reagents and conditions: (i) KOH, CS2, EtOH, 90 ℃, 24 h; (ii) KOH, H2O, 2-(chloromethyl)benzothiazole, 90 ℃, 1 h; (iii) POCl3, 70 ℃, 1 h; (iv) different anilines, N, N-dimethylformamide, 90 ℃, 2 h.

    In order to explore the antiproliferative activity of the target compounds, compounds 13a~13t were evaluated against four human cancer cell lines including human breast cancer cell line (MCF-7), human gastric carcinoma cell line (MGC-803), human prostate cancer cell line (PC-3), human gastric carcinoma cell line (HGC-27) by using MTT assay. Gefitinib was employed as the positive control. The results are shown in Table 1.

    表 1

    Table 1.  Antiproliferative activity [IC50/(μmol•L-1)] of target compounds 13a~13t against four cancer cell linesa
    下载: 导出CSV
    Compd. R1 MCF-7 MGC-803 PC-3 HGC-27
    13a 4-Cl 19.05±1.28 8.30±0.92 20.12±1.01 8.49±0.92
    13b 3-Cl 27.67±1.44 >50 10.78±1.03 21.44±1.42
    13c H >50 25.84±1.20 24.42±1.15 22.52±1.35
    13d 2-Cl >50 >50 8.84±0.64 >50
    13e 4-F 20.66±1.31 9.55±0.98 10.34±1.01 16.62±1.21
    13f 2-OCH3 >50 >50 >50 >50
    13g 2-OCH2CH3 >50 >50 49.92±1.69 >50
    13h 4-OCH2CH3 >50 >50 19.78±1.29 >50
    13i 4-OCH3 >50 >50 15.024±1.177 >50
    13j 3-F 47.45±1.67 14.18±1.20 8.77±0.34 10.20±1.00
    13k 2-F >50 >50 14.42±1.15 13.24±1.12
    13l 3-OCH3 37.40±1.57 >50 13.64±1.14 18.76±1.27
    13m 2-CH2CH3 >50 12.66±1.10 17.16±1.10 12.54±1.09
    13n 3-Cl-4-F 6.01±0.54 7.63±0.48 6.16±0.34 7.59±0.62
    13o 3-CF3 11.71±1.06 9.47±0.97 19.64±0.74 7.80±0.89
    13p 3, 4, 5-(OCH3)3 >50 >50 18.28±1.26 36.71±156
    13q 4-CH2CH3 >50 >50 14.99±1.17 23.77±1.37
    13r 2-CH3 >50 13.57±1.11 9.98±1.02 15.42±1.18
    13s 3-CH3 >50 >50 17.45±1.23 22.42±1.35
    13t 4-CH3 >50 14.23±1.15 17.49±1.24 18.88±1.27
    Gefitinibb 7.34±0.86 8.82±0.63 7.99±0.54 12.44±0.87
    Antiproliferative was assayed by exposure for 72 h to substances and expressed as concentration required to inhibit tumor cells proliferation by 50% (IC50). b Used as a positive control.

    In order to explore the structure-activity relationship, different substituents were introduced to quinazoline scaffold. As shown in Table 1, the majority of the compounds exhibited moderate to potent antiproliferative activity against four human cancer cell lines. Most of the target compounds exerted moderate cytotoxic activity against PC-3 and HGC-27 cell lines. However, most of the target compounds showed moderate to low cytotoxicity against MCF-7 and MGC-803 cell lines. Among all the target compounds, compound 13n showed the best cytotoxicity against the tested cell lines (MCF-7, PC-3, HGC-27 and MGC-803) with IC50 values of (6.0±0.5), (7.6±0.4), (6.1±0.3), (7.6±0.7) μmol•L-1, which was better than gefitinib.

    Comparing 13a, 13b, 13e, 13j, 13n, 13o with 13f, 13g, 13h, 13i, 13p, we concluded that compounds with electron-withdrawing groups at R1 of benzene exhibited better cytotoxicity than compounds with electron-donating groups. Comparing 13a, 13b, 13d with 13e, 13j, 13k, the results indicated that electron-withdrawing groups at 4-position of benzene was favorable for the antitumor activity. From the biological data of compounds 13r~13t, the results revealed that the methyl at 2-position of benzene had better cytotoxic activity for cancer cells than that at 3- or 4-position.

    In order to predict the possible binding mode of this series of compounds with EGFR, molecular docking was performed using MOE 2014. EGFR (PDB code: 2ITO) was retrieved from the Protein Data Bank (http://www.rcsb. org/pdb) for the docking calculations. Based on the antiproliferative activity results, compound 13n (the most potent compound) was selected as ligand. The docking study of compound 13n with EGFR protein was performed using gefitinib as positive controls (Figure 2). In the binding model, comparing Figure 2A with 2B, compound 13n can bind to Met793 (0.3.71 nm) residue by hydrogen bonds and formed π-H interaction with Leu718 (0.365 nm), which is similar to the binding site of gefitinib in EGFR domain. The result suggests that compound 13n may be a valuable lead compound.

    图 2

    Figure 2.  Predicted binding model of (A) gefitinib and (B) compound 13n with EGFR (selected residues MET793 in EGFR are shown, Dashed lines indicate hydrogen bonds)

    In conclusion, a series of novel 4-aminoquinazoline quinazolines containing benzothiazole were synthesized and their cytotoxic activity against MCF-7, MGC-803 and PC-3, HGC-27 cells was evaluated by using MTT assay. Among all the tested compounds, compound 13n showed the most potent anti-proliferative activity against the tested cells. Molecular docking showed that compound 13n could bind well with EGFR, suggesting that compound 13n might be a valuable lead compound. This work provided clues to discover antitumor agent based on the quinazoline scaffold.

    Reagents and solvents were purchased from commercial sources and were used without further purification. Column chromatography was carried out on 200~300 mesh silica gel (Qingdao Haiyang Chemical, China). Reactions were monitored by thin-layer chromatography (TLC) on 0.25 mm silicagel plates (GF254) and visualized under UV light. Melting points were determined on an X-5 micro-melting apparatus and were uncorrected. 1H NMR and 13C NMR spectra were recorded on a Bruker 400 MHz and 101 MHz spectrometer, respectively. High resolution mass spectra (HRMS) of all derivatives were recorded on a Waters Micro-mass Q-T of Micro-mass spectrometer by electrospray ionization (ESI).

    4.2 Chemistry

    4.2.1 Synthesis of 2-mercapto-4-hydroxyquinazoline (10)

    Compound 10 was synthesized according to the published literature[38] and the characterization data was consistent with the literature.

    4.2.2   Synthesis of 2-((benzo[d]thiazol-2-ylmethyl)- thio)quinazolin-4-o-l (11)

    Compound 10 (0.01 mol) was dissolved in 50 mL of aqueous solution of KOH (0.01 mmol) at room temperature. 2-(Chloromethyl)benzothiazole (0.012 mol) was dissolved in acetone(10 mL) and the solution was added slowly to the above reaction, then the temperature was raised to 90 ℃ for 1 h, the reaction was completed (TLC detection reaction). The reaction solution was cooled to room temperature. Then, the precipitate was collected by filtration, washed three times with water and acetone and dried in vacuo to give compound 11 as white solid (yield 75%). m.p. 165~166 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 12.80 (s, 1H), 8.05 (dd, J=14.5, 7.4 Hz, 2H), 7.97 (d, J=6.7 Hz, 1H), 7.84~7.77 (m, 1H), 7.61 (d, J=8.1 Hz, 1H), 7.53~7.44 (m, 2H), 7.42 (dd, J=11.2, 4.0 Hz, 1H), 4.98 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 174.3, 168.2, 161.1, 154.1, 152.2, 148.0, 135.3, 134.8, 126.2 126.1, 126.0, 125.3, 122.4, 122.2, 120.0, 31.5.

    4.2.3   Synthesis of 2-(((4-chloroquinazolin-2-yl)thio)- methyl)benzo[d]-thiazole (12)

    Compound 11 (0.01 mol) was added to a 25 mL round bottom flask, followed by addition of phosphorus oxychloride (0.08 mol), then the temperature was raised to 70 ℃ for 1 h. The reaction system was cooled to room temperature, and added to the stirred ice water mixture. The precipitate was collected by filtration and washed three times with water, dried to give compound 12 as yellow solid, yield 77%. m.p. 169~170 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 8.05 (dd, J=14.5, 7.4 Hz, 2H), 7.97 (d, J=8.1 Hz, 1H), 7.84~7.77 (m, 1H), 7.61 (d, J=8.1 Hz, 1H), 7.54~7.44 (m, 2H), 7.42 (dd, J=11.2, 4.0 Hz, 1H), 4.98 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 174.3, 168.2, 161.10, 154.1, 152.2, 148.0, 135.3, 134.8, 126.2, 126.1, 126.0, 125.3, 122.4, 122.2, 120.0, 31.5.

    4.2.4   General procedure for synthesis of target compounds 13a~13t

    Compound 12 (0.35mmol) was dissolved in 4 mL of DMF at room temperature. Then, aniline (0.39 mmol) was added dropwise to the above system. The reaction was carried out at 90 ℃ for 2 h. After the reaction was completed (TLC detection reaction), it was cooled to room temperature. An appropriate amount of water was added to the system to get white solid. The precipitate was collected by filtration. Next, crude compound was subjected to column chromatography (petroleum ether/ethyl acetate, V: V=3:1). Concentrated eluent to give solid compounds 13a~13t.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(4-chlorophenyl)- quinazolin-4-amine(13a): White solid, yield 56%. m.p. 166~167 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.03 (s, 1H), 8.49 (d, J=8.2 Hz, 1H), 7.97 (t, J=8.9 Hz, 2H), 7.87~7.78 (m, 3H), 7.70 (d, J=8.3 Hz, 1H), 7.55 (dd, J=11.2, 4.1 Hz, 1H), 7.51~7.46 (m, 1H), 7.39 (dd, J=15.4, 8.4 Hz, 3H), 4.87 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.1, 164.3, 157.2, 152.6, 150.0, 137.5, 135.1, 133.8, 128.3, 127.8, 126.4, 126.1, 125.4, 125.0, 124.1, 123.3, 122.3, 122.1, 113.2, 32.3; HRMS calcd for C22H16ClN4S2 [M+H]+ 435.0505, found 435.0507.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3-chlorophenyl)- quinazolin-4-amine (13b): White solid, yield 51%. m.p. 136~137 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.05 (s, 1H), 8.51 (d, J=8.2 Hz, 1H), 8.04~7.93 (m, 3H), 7.86 (t, J=7.6 Hz, 1H), 7.79 (d, J=8.1 Hz, 1H), 7.71 (d, J=8.2 Hz, 1H), 7.58 (t, J=7.6 Hz, 1H), 7.48 (t, J=7.6 Hz, 1H), 7.39 (q, J=7.9 Hz, 2H), 7.19 (d, J=7.0 Hz, 1H), 4.90 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.7, 164.2, 157.22, 152.5, 150.1, 140.1, 135.2, 133.9, 132.8, 130.1, 126.5, 126.1, 125.5, 125.0, 123.7, 123.3, 122.3, 122.0, 121.9, 120.7, 113.2, 32.2; HRMS calcd for C22H16ClN4S2 [M+H]+ 435.0505, found 435.0502.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-phenylquinazo-

    lin-4-amine (13c): White solid, yield 50%. m.p. 159~160 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.97 (s, 1H), 8.51 (d, J=8.2 Hz, 1H), 7.96 (dd, J=7.9, 4.7 Hz, 2H), 7.82 (t, J=7.6 Hz, 1H), 7.75 (d, J=7.9 Hz, 2H), 7.68 (d, J=8.2 Hz, 1H), 7.54 (t, J=7.6 Hz, 1H), 7.47 (t, J=7.7 Hz, 1H), 7.37 (t, J=7.8 Hz, 3H), 7.14 (t, J=7.4 Hz, 1H), 4.87 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.1, 164.3, 157.4, 152.6, 150.1, 138.5, 135.2, 133.6, 128.5, 126.4, 126.1, 125.3, 125.0, 124.2, 123.4, 122.7, 122.3, 122.0, 113.3, 32.2; HRMS calcd for C22H17N4S2 [M+H]+401.0895, found 401.0892.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(2-chlorophenyl)- quinazolin-4-amine (13d): White solid, yield 54%. m.p. 176~177 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.12 (s, 1H), 8.45 (d, J=8.2 Hz, 1H), 7.94 (s, 2H), 7.85 (t, J=7.6 Hz, 1H), 7.70 (t, J=8.3 Hz, 1H), 7.55 (d, J=7.7 Hz, 3H), 7.48 (d, J=7.9 Hz, 1H), 7.39 (s, 2H), 7.36~7.33 (m, 1H), 4.72 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.9, 164.4, 158.4, 152.4, 150.1, 135.2, 135.1, 133.9, 130.9, 129.7, 129.6, 128.1, 127.6, 126.3, 126.0, 125.4, 125.0, 123.3, 122.3, 121.9, 112.8, 32.0; HRMS calcd for C22H16ClN4S2 [M+H]+ 435.0505, found 435.0504.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(4-fluorophenyl)- quinazolin-4-amine (13e): White solid, yield 54%. m.p. 129~130 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.01 (s, 1H), 8.49 (d, J=8.2 Hz, 1H), 7.97 (t, J=7.6 Hz, 2H), 7.83 (t, J=7.6 Hz, 1H), 7.76 (dd, J=8.9, 5.0 Hz, 2H), 7.69 (d, J=8.2 Hz, 1H), 7.55 (t, J=7.6 Hz, 1H), 7.49 (t, J=7.7 Hz, 1H), 7.38 (t, J=7.6 Hz, 1H), 7.21 (t, J=8.8 Hz, 2H), 4.86 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.1, 164.3, 159.9 (d, J=256.5 Hz), 152.6, 150.0, 135.2, 134.8 (d, J=3.0 Hz), 133.7, 126.4, 126.1, 125.3, 125.0, 124.8 (d, J=8.1 Hz), 123.3, 122.3, 122.0, 115.2, 115.0, 113.1, 32.3; HRMS calcd for C22H16FN4S2 [M+H]+ 419.0800, found 419.0802.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(2-methoxy-

    phenyl) quinazolin-4-amine (13f): White solid, yield 51%. m.p. 144~145 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.65 (s, 1H), 8.44 (d, J=7.8 Hz, 1H), 7.95 (dd, J=13.9, 7.8 Hz, 2H), 7.84~7.78 (m, 1H), 7.66 (d, J=7.7 Hz, 1H), 7.55~7.45 (m, 3H), 7.40~7.35 (m, 1H), 7.27~7.22 (m, 1H), 7.11 (dd, J=8.3, 1.0 Hz, 1H), 6.97 (td, J=7.6, 1.2 Hz, 1H), 4.75 (s, 2H), 3.77 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.0, 164.5, 158.2, 153.6, 152.4, 150.0, 135.2, 133.5, 127.3, 127.0, 126.4, 126.3, 126.0, 125.2, 125.0, 123.3, 122.3, 122.0, 120.2, 113.1, 111.9, 55.6, 32.1; HRMS calcd for C23H19N4OS2 [M+H]+ 431.1000, found 431.0998.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(2-ethoxy-

    phenyl) quinazolin-4-amine (13g): White solid, yield 47%. m.p. 127~128 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.61 (s, 1H), 8.40 (d, J=6.4 Hz, 1H), 7.94 (s, 2H), 7.82 (s, 1H), 7.68 (s, 1H), 7.51 (d, J=26.6 Hz, 3H), 7.38 (s, 1H), 7.22 (s, 1H), 7.10 (s, 1H), 6.96 (s, 1H), 4.77 (s, 2H), 4.03 (d, J=5.9 Hz, 2H), 1.19 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.0, 164.4, 158.0, 152.7, 152.4, 149.8, 135.2, 133.5, 126.9, 126.2, 126.0, 125.4 125.3, 125.0, 124.5, 123.2, 122.3, 122.0, 120.2, 113.1, 113.0, 63.8, 32.1, 14.6; HRMS calcd for C24H21N4OS2 [M+H]+ 445.1157, found 445.1156.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(4-ethoxy-

    phenyl) quinazolin-4-amine (13h): White solid, yield 50%. m.p. 150~151 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.89 (s, 1H), 8.47 (d, J=8.2 Hz, 1H), 7.97 (dd, J=15.4, 6.5 Hz, 2H), 7.81 (t, J=7.3 Hz, 1H), 7.66 (d, J=8.1 Hz, 1H), 7.59 (d, J=9.0 Hz, 2H), 7.55~7.46 (m, 2H), 7.39 (dd, J=11.1, 4.0 Hz, 1H), 6.92 (t, J=6.1 Hz, 2H), 4.85 (s, 2H), 4.01 (q, J=6.9 Hz, 2H), 1.33 (t, J=7.0 Hz, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.2, 164.4, 157.4, 155.4, 152.6, 149.9, 135.2, 133.5, 131.1, 126.3, 126.0, 125.1, 125.0, 124.5, 123.3, 122.3, 122.0, 114.1, 113.2, 63.1, 32.2, 14.6; HRMS calcd for C24H21N4OS2 [M+H]+ 445.1157, found 445.1154.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(4-methoxy-

    phenyl) quinazolin-4-amine (13i): White solid, yield 54%. m.p. 152~153 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.91 (s, 1H), 8.47 (d, J=8.2 Hz, 1H), 7.96 (t, J=7.4 Hz, 2H), 7.80 (t, J=7.3 Hz, 1H), 7.66 (d, J=8.1 Hz, 1H), 7.61 (d, J=9.0 Hz, 2H), 7.53~7.49 (m, 1H), 7.49~7.45 (m, 1H), 7.36 (dd, J=11.5, 4.5 Hz, 1H), 6.92 (d, J=9.0 Hz, 2H), 4.84 (s, 2H), 3.75 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.2, 164.4, 157.4, 156.1, 152.6, 149.9, 135.2, 133.5, 131.2, 126.3, 126.1, 125.1, 125.0, 124.5, 123.3, 122.3, 122.0, 113.6, 113.2, 55.2, 32.2; HRMS calcd for C23H19N4OS2 [M+H]+ 431.1000, found 431.1003.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3-fluorophenyl)- quinazolin-4-amine (13j): White solid, yield 54%. m.p. 148~149 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.07 (s, 1H), 8.53 (d, J=8.1 Hz, 1H), 7.97 (t, J=8.6 Hz, 2H), 7.86 (dd, J=11.2, 4.1 Hz, 1H), 7.83~7.78 (m, 1H), 7.72 (d, J=7.8 Hz, 1H), 7.65 (dd, J=8.2, 1.1 Hz, 1H), 7.61~7.56 (m, 1H), 7.51~7.46 (m, 1H), 7.45~7.36 (m, 2H), 6.98 (td, J=8.4, 2.2 Hz, 1H), 4.91 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.7, 164.2, 163.12 (d, J=242.4 Hz), 157.2, 152.5, 150.0, 135.2, 133.8, 130.0 (d, J=9.1 Hz), 126.4, 126.1, 125.5, 125.0, 123.4, 122.3, 122.0, 118.0, 117.9, 113.2, 110.6 (d, J=21.2 Hz), 109.2, 32.2; HRMS calcd for C22H16FN4S2 [M+H]+ 419.0800, found 419.0802.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(2-fluorophenyl)- quinazolin-4-amine (13k): White solid, yield 52%. m.p. 177~178 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.07 (s, 1H), 8.45 (d, J=7.9 Hz, 1H), 7.98~7.92 (m, 2H), 7.88~7.83 (m, 1H), 7.70 (d, J=7.8 Hz, 1H), 7.55 (td, J=8.3, 1.1 Hz, 2H), 7.50~7.46 (m, 1H), 7.40~7.36 (m, 1H), 7.35~7.29 (m, 2H), 7.26~7.21 (m, 1H), 4.76 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.8, 164.4, 158.2 (d, J=265.6 Hz), 152.4, 150.0, 135.2, 133.8, 128.4, 127.8 (d, J=8.1 Hz), 126.3, 126.0, 125.6, 125.5, 125.4, 125.0, 124.4 (d, J=3.0 Hz), 123.4, 122.3, 122.0 116.1 (d, J=20.2 Hz), 112.9, 32.1; HRMS calcd for C22H16FN4S2 [M+H]+ 419.0800, found 419.0803.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3-methoxy-

    phenyl) quinazolin-4-amine (13l): White solid, yield 48%. m.p. 147~148 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.94 (s, 1H), 8.53 (d, J=8.1 Hz, 1H), 7.97 (t, J=7.6 Hz, 2H), 7.83 (d, J=7.2 Hz, 1H), 7.71 (d, J=7.9 Hz, 1H), 7.56 (t, J=7.6 Hz, 1H), 7.52~7.46 (m, 2H), 7.41 (t, J=8.1 Hz, 2H), 7.28 (t, J=8.1 Hz, 1H), 6.74 (dd, J=8.1, 2.0 Hz, 1H), 4.90 (s, 2H), 3.78 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.9, 164.3, 159.3, 157.3, 152.5, 150.0, 139.7, 135.2, 133.7, 129.2, 126.4, 126.1, 125.3, 125.0, 123.3, 122.3, 122.0, 114.7, 113.3, 109.7, 108.2, 55.0, 32.2; HRMS calcd for C23H19N4OS2 [M+H]+ 431.1000, found 431.1002.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(2-ethylphenyl)-

    quinazolin-4-amine (13m): White solid, yield 49%. m.p. 75~76 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.92 (s, 1H), 8.47 (d, J=8.2 Hz, 1H), 7.94 (dd, J=12.9, 8.0 Hz, 2H), 7.82 (t, J=7.6 Hz, 1H), 7.67 (d, J=8.2 Hz, 1H), 7.53 (t, J=7.5 Hz, 1H), 7.47 (t, J=7.3 Hz, 1H), 7.38 (t, J=7.4 Hz, 1H), 7.33~7.29 (m, 2H), 7.24 (dd, J=15.4, 7.5 Hz, 2H), 4.70 (s, 2H), 2.54 (dd, J=15.1, 7.5 Hz, 2H), 1.05 (t, J=7.5 Hz, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.9, 164.6, 158.8, 152.4, 149.8, 140.6, 135.8, 135.2, 133.6, 128.6, 128.2, 127.1, 126.2, 126.0, 125.2, 124.9, 123.3, 122.3, 121.9, 112.9, 54.9, 32.0, 24.0, 14.0; HRMS calcd for C24H21N4S2 [M+H]+ 429.1208, found 429.1208.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3-chloro-4-

    fluorophenyl) quinazolin-4-amine (13n): White solid, yield 45%. m.p. 199~200 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.07 (s, 1H), 8.47 (d, J=8.1 Hz, 1H), 8.08 (dd, J=6.8, 2.6 Hz, 1H), 7.96 (dd, J=12.4, 8.0 Hz, 2H), 7.85 (t, J=7.6 Hz, 1H), 7.77 (ddd, J=9.0, 4.2, 2.7 Hz, 1H), 7.71 (d, J=8.0 Hz, 1H), 7.57 (t, J=7.6 Hz, 1H), 7.50~7.46 (m, 1H), 7.42~7.36 (m, 2H), 4.88 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.7, 164.2, 159.6 (d, J=238.4 Hz), 152.5, 150.0, 140.4, 135.2, 133.8, 126.5, 126.1, 125.5, 125.0, 124.2, 123.3, 123.0, 122.9, 122.3, 122.0, 116.6 (d, J=21.2 Hz), 115.8, 113.1, 32.2; HRMS calcd for C22H15ClFN4S2 [M+H]+ 453.0411, found 453.0411.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3-(trifluoro-

    methyl) phenyl)quinazolin-4-amine (13o): White solid, yield 48%. m.p. 104~105 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 10.20 (s, 1H), 8.54 (d, J=8.3 Hz, 1H), 8.30 (s, 1H), 8.15 (d, J=8.2 Hz, 1H), 7.96 (t, J=7.6 Hz, 2H), 7.87 (t, J=7.6 Hz, 1H), 7.73 (d, J=8.2 Hz, 1H), 7.61 (dt, J=10.9, 7.8 Hz, 2H), 7.48 (t, J=7.4 Hz, 2H), 7.38 (t, J=7.6 Hz, 1H), 4.90 (s, 2H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.6, 164.2, 157.3, 152.4, 150.1, 139.5, 135.2, 133.9, 129.6, 129.4, 129.1, 126.5, 126.1, 125.9, 125.5, 125.0, 123.3, 122.3, 122.0, 120.2, 118.6, 113.2, 32.2; HRMS calcd for C23H16F3N4S2 [M+H]+ 469.0768, found 469.0769.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(3, 4, 5-trimeth-

    oxyphenyl) quinazolin-4-amine (13p): White solid, yield 53%. m.p. 172~173 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.87 (s, 1H), 8.51 (dd, J=8.5, 1.3 Hz, 1H), 7.98~7.93 (m, 2H), 7.84 (ddd, J=8.3, 6.9, 1.3 Hz, 1H), 7.70 (dd, J=8.4, 1.2 Hz, 1H), 7.60~7.54 (m, 1H), 7.48 (ddd, J=8.3, 7.2, 1.3 Hz, 1H), 7.38 (td, J=7.6, 7.2, 1.2 Hz, 1H), 7.28 (s, 2H), 4.90 (s, 2H), 3.80 (s, 6H), 3.66 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.6, 164.3, 157.2, 152.5, 152.3, 149.9, 135.2, 134.6, 134.2, 133.6, 126.5, 126.0, 125.3, 125.0, 123.2, 122.3, 122.0, 113.3, 100.5, 60.1, 55.8, 32.2; HRMS calcd for C25H23N4O3S2 [M+H]+ 491.1212, found 491.1210.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(4-ethylphenyl)-

    quinazolin-4-amine (13q): White solid, yield 53%. m.p. 127~128 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.99 (s, 1H), 8.53 (d, J=8.1 Hz, 1H), 7.97 (t, J=7.5 Hz, 2H), 7.81 (dd, J=11.2, 4.1 Hz, 1H), 7.70~7.63 (m, 3H), 7.51 (ddd, J=15.4, 8.2, 1.1 Hz, 2H), 7.41~7.35 (m, 1H), 7.18 (d, J=8.5 Hz, 2H), 4.87 (s, 2H), 2.59 (q, J=7.6 Hz, 2H), 1.17 (t, J=7.6 Hz, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.2, 164.4, 157.4, 152.6, 150.0, 139.7, 136.2, 135.2, 133.5, 127.6, 126.3, 126.0, 125.2, 125.0, 123.4, 122.8, 122.3, 122.0, 113.3, 32.2, 27.6, 15.6; HRMS calcd for C24H21N4S2 [M+H]+ 429.1208, found 429.1206.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(o-tolyl)quinazo- lin-4-amine (13r): White solid, yield 53%. m.p. 146~147 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.99 (s, 1H), 8.52 (d, J=8.2 Hz, 1H), 7.95 (dd, J=14.2, 8.0 Hz, 2H), 7.82 (t, J=7.6 Hz, 1H), 7.67 (d, J=8.2 Hz, 1H), 7.53 (t, J=7.5 Hz, 1H), 7.48 (t, J=7.5 Hz, 1H), 7.38 (p, J=7.5 Hz, 1H), 7.35~7.27 (m, 2H), 7.22 (p, J=7.0 Hz, 2H), 4.72 (s, 2H), 2.16 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 169.9, 164.5, 158.4, 152.4, 150.0, 136.5, 135.2, 134.8, 133.5, 130.4, 127.6, 126.6, 126.3, 126.1, 126.0, 125.1, 124.9, 123.5, 122.3, 122.0, 113.0, 32.1, 17.9; HRMS calcd for C23H19N4S2 [M+H]+ 415.1051, found 415.1052.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(m-tolyl)-

    quinazolin-4-amine (13s): White solid, yield 48%. m.p. 168~169 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.91 (s, 1H), 8.52 (d, J=8.2 Hz, 1H), 8.00~7.93 (m, 2H), 7.83 (t, J=7.3 Hz, 1H), 7.68 (d, J=8.1 Hz, 1H), 7.61 (s, 1H), 7.56 (dd, J=16.2, 8.1 Hz, 2H), 7.48 (dd, J=11.2, 4.1 Hz, 1H), 7.38 (t, J=7.2 Hz, 1H), 7.25 (t, J=7.8 Hz, 1H), 6.97 (d, J=7.4 Hz, 1H), 4.89 (s, 2H), 2.30 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.0, 164.3, 157.4, 152.5, 150.1, 138.4, 137.7, 135.2, 133.6, 128.3, 126.4, 126.1, 125.2, 125.0, 124.9, 123.3, 123.3, 122.3, 122.0, 119.9, 113.3, 32.2, 21.0; HRMS calcd for C23H19N4S2 [M+H]+ 415.1051, found 415.1053.

    2-((Benzo[d]thiazol-2-ylmethyl)thio)-N-(p-tolyl)quina-

    zolin-4-amine (13t): White solid, yield 52%. m.p. 150~151 ℃; 1H NMR (DMSO-d6, 400 MHz) δ: 9.92 (s, 1H), 8.50 (d, J=8.1 Hz, 1H), 7.97 (t, J=7.5 Hz, 2H), 7.81 (dd, J=11.2, 4.0 Hz, 1H), 7.68 (d, J=7.9 Hz, 1H), 7.61 (d, J=8.4 Hz, 2H), 7.56~7.51 (m, 1H), 7.49 (dd, J=11.7, 4.7 Hz, 1H), 7.38 (dd, J=11.5, 4.6 Hz, 1H), 7.17 (d, J=8.3 Hz, 2H), 4.87 (s, 2H), 2.30 (s, 3H); 13C NMR (DMSO-d6, 101 MHz) δ: 170.2, 164.4, 157.4, 152.6, 150.0, 135.8, 135.2, 133.6, 133.4, 128.9, 126.4, 126.1, 125.2, 125.0, 123.3, 122.8, 122.3, 122.1, 113.3, 32.2, 20.5; HRMS calcd for C23H19N4S2 [M+H]+ 415.1051, found 415.1052.

    4.2.5   Cell culture and treatment

    Human cancer cells MCF-7, MGC-803 and PC-3, HGC-27 was purchased from the China Center for Type Culture Collection and maintained in RPMI-1640 and DMEM complete medium at 37 ℃ in a humidified atmosphere with CO2 in 5% volume ratio.

    4.2.6   MTT assay

    Cells in the logarithmic growth phase were seeded in 96-well plates at 3000~5000 cells per well. After the cells were cultured for 24 h, different concentrations of compounds 13a~13t were treated for 72 h, respectively. MTT was added to each well at a final concentration of 0.5 mg/mL. After 4 h in a 37 ℃ incubator, the medium was aspirated. 150 μL of dimethyl sulfoxide (DMSO) was then added to each well to dissolve the formazan, and the plate was shaken on a shaker for 10 min. The absorbance was measured by an enzyme-linked immunosorbent assay reader (BioTek, USA) at a wavelength of 490 nm, and the cell survival rate was measured. Viability rate=Abs 490 treated cells/Abs 490 control cells×100%. The concentration-response curve generated by SPSS 16.0 software was used to determine the concentration of compound (IC50) required to inhibit cell growth by 50%. Cell viability curves were generated using GraphPad Prism 7.0 software at various concentrations of all compounds. Results were Mean±SD of three independent experiments.

    Supporting Information 1H NMR and 13C NMR spectra of compounds 11, 12 and 13a~13t. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.

    (Zhao, C.)


    1. [1]

      Li, E. D.; Lin, Q.; Meng, Y. Q.; Zhang, L. Y.; Song, P. P.; Li, N.; Xin, J. C.; Yang, P.; Bao, C. N.; Zhang, D. Q.; Zhang, Y.; Wang, J. K.; Zhang, Q. R.; Liu, H. M. Eur. J. Med. Chem. 2019, 172, 36. doi: 10.1016/j.ejmech.2019.03.030

    2. [2]

      Qin, M.; Wang, T.; Xu, B.; Ma, Z.; Jiang, N.; Xie, H.; Gong, P.; Zhao, Y. Eur. J. Med. Chem. 2015, 104, 115. doi: 10.1016/j.ejmech.2015.09.031

    3. [3]

      Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V. R.; Sulthana, M. T.; Narendhar, B. Eur. J. Med. Chem. 2018, 151, 628. doi: 10.1016/j.ejmech.2018.03.076

    4. [4]

      Kabri, Y.; Azas, N.; Dumetre, A.; Hutter, S.; Laget, M.; Verhaeghe, P.; Gellis, A.; Vanelle, P. Eur. J. Med. Chem. 2010, 45, 616. doi: 10.1016/j.ejmech.2009.11.005

    5. [5]

      Rojas Aguirre, Y.; Hernández Luis, F.; Mendoza Martínez, C.; Sotomayor, C. P.; Aguilar, L. F.; Villena, F.; Castillo, I.; Hernández, D. J.; Suwalsky, M. Biochim. Biophys. Acta 2012, 1818, 738. doi: 10.1016/j.bbamem.2011.11.026

    6. [6]

      Ji, Q.; Yang, D.; Wang, X.; Chen, C.; Deng, Q.; Ge, Z.; Yuan, L.; Yang, X.; Liao, F. Bioorg. Med. Chem. Lett. 2014, 22, 3405. doi: 10.1016/j.bmc.2014.04.042

    7. [7]

      Selvam, T. P.; Sivakumar, A.; Prabhu, P. P. J. Pharm. BioAllied Sci. 2014, 6, 278. doi: 10.4103/0975-7406.142960

    8. [8]

      Rakesh, K. P.; Manukumar, H. M.; Gowda, D. C. Bioorg. Med. Chem. Lett. 2015, 25, 1072. doi: 10.1016/j.bmcl.2015.01.010

    9. [9]

      Hu, J.; Zhang, Y.; Dong, L.; Wang, Z.; Chen, L.; Liang, D.; Shi, D.; Shan, X.; Liang, G. Chem. Biol. Drug Des. 2015, 85, 672. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DE20101005498

    10. [10]

      Ugale, V. G.; Bari, S. B. Eur. J. Med. Chem. 2014, 80, 447. doi: 10.1016/j.ejmech.2014.04.072

    11. [11]

      El-Azab, A. S.; Eltahir, K. E. Bioorg. Med. Chem. Lett. 2012, 22, 327. doi: 10.1016/j.bmcl.2011.11.007

    12. [12]

      Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F. Jr.; Sumegi, B.; Toth, K.; Halmosi, R. Biochim. Biophys. Acta 2014, 1842, 935.

    13. [13]

      Malamas, M. S.; Millen, J. J. Med. Chem. 1991, 34, 1492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DE20101005498

    14. [14]

      Galvez, J.; Polo, S.; Insuasty, B.; Gutierrez, M.; Caceres, D.; Alzate-Morales, J. H.; De-la-Torre, P.; Quiroga, J. Comput. Biol. Chem. 2018, 74, 218. doi: 10.1016/j.compbiolchem.2018.03.001

    15. [15]

      Mohamed, T.; Rao, P. P. N. Eur. J. Med. Chem. 2017, 126, 823. doi: 10.1016/j.ejmech.2016.12.005

    16. [16]

      Ravez, S.; Castillo-Aguilera, O.; Depreux, P.; Goossens, L. Expert. Opin. Ther. Pat. 2015, 25, 789. doi: 10.1517/13543776.2015.1039512

    17. [17]

      Mehndiratta, S.; Sapra, S.; Singh, G.; Singh, M.; Nepali, K. Recent Pat. Anti-Cancer Drug Discovery 2016, 11, 2. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DE20101005498

    18. [18]

      Qin, X.; Lv, Y.; Liu, P.; Li, Z.; Hu, L.; Zeng, C.; Yang, L. Bioorg. Med. Chem. Lett. 2016, 26, 1571. doi: 10.1016/j.bmcl.2016.02.009

    19. [19]

      李二冬, 孟娅琪, 张路野, 张洋, 王继宽, 张丹青, 宋攀攀, 辛景超, 栗娜, 郑甲信, 可钰, 刘宏民, 张秋荣, 有机化学, 2019, 39, 2875. doi: 10.6023/cjoc201903062Li, E. D.; Meng, Y. Q.; Zhang, L. Y.; Zhang, Y.; Wang, J. K.; Zhang, D. Q.; Song, P. P.; Xin, J. C.; Li, N.; Zheng, J. X.; Ke, Y.; Liu, H. M.; Zhang, Q. R. Chin. J. Org. Chem. 2019, 39, 2875(in Chinese). doi: 10.6023/cjoc201903062

    20. [20]

      Hei, Y. Y.; Shen, Y.; Wang, J.; Zhang, H.; Zhao, H. Y.; Xin, M.; Cao, Y. X.; Li, Y.; Zhang, S. Q. Bioorg. Med. Chem. 2018, 26, 2173. doi: 10.1016/j.bmc.2018.03.025

    21. [21]

      Patel, H.; Pawara, R.; Ansari, A.; Surana, S. Eur. J. Med. Chem. 2017, 142, 32. doi: 10.1016/j.ejmech.2017.05.027

    22. [22]

      Kharbanda, C.; Alam, M. S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Bioorg. Med. Chem. 2014, 22, 5804. doi: 10.1016/j.bmc.2014.09.028

    23. [23]

      Alan D, B.; Dave E, D.; Peter F, E.; Anne M, E.; Terry M, H.; Graham J, H.; Deborah L, J.; Nigel R, P.; Angela, P.; Naimisha, T.; Gordon G, W.; James M, W. J. Med. Chem. 2003, 46, 4428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DE20101005498

    24. [24]

      Patil, K. N.; Bhat, R. K.; Bhenki, C. D.; Helavi, V. B. Chem. Data Collect. 2019, 24, 100307. doi: 10.1016/j.cdc.2019.100307

    25. [25]

      Jeong, C. Y.; Choi, J. I.; Yoon, M. H. Eur. J. Pharmacol. 2004, 502, 205. doi: 10.1016/j.ejphar.2004.08.048

    26. [26]

      Mene, D.; Kale, M. Curr. Org. Synth. 2016, 13, 41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=DE20101005498

    27. [27]

      李二冬, 孟娅琪, 张路野, 张洋, 周蕊, 刘丽敏, 栗娜, 辛景超, 郑甲信, 单丽红, 刘宏民, 张秋荣, 有机化学, 2020, 40, 417. doi: 10.6023/cjoc201907016Li, E. D.; Meng, Y. Q.; Zhang, L. Y.; Zhang, Y.; Zhou, R.; Liu, L. M.; Li, N.; Xin, J. C.; Zheng, J. X.; Shan, L. H.; Liu, H. M.; Zhang, Q. R. Chin. J. Org. Chem. 2020, 40, 417(in Chinese). doi: 10.6023/cjoc201907016

    28. [28]

      Bénéteaua, V.; Bessona, T.; Guillarda, J.; Léonceb, S.; Pfeifferc, B. Eur. J. Med. Chem. 1999, 34, 1053. doi: 10.1016/S0223-5234(99)00130-0

    29. [29]

      Chakraborty, I.; Pinto, M.; Stenger-Smith, J.; Martinez-Gonzalez, J.; Mascharak, P. K. Polyhedron 2019, 172, 1. doi: 10.1016/j.poly.2019.02.001

    30. [30]

      Sahu, P. K.; Sahu, P. K.; Gupta, S. K.; Thavaselvam, D.; Agarwal, D. D. Eur. J. Med. Chem. 2012, 54, 366. doi: 10.1016/j.ejmech.2012.05.020

    31. [31]

      Huang, T.; Wu, X.; Yu, Y.; An, L.; Yin, X. Tetrahedron Lett. 2019, 60, 1667. doi: 10.1016/j.tetlet.2019.05.043

    32. [32]

      Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. Bioorg. Chem. 2018, 81, 630. doi: 10.1016/j.bioorg.2018.09.015

    33. [33]

      Mallikarjuna, N. M.; Keshavayya, J.; Ravi, B. N. J. Mol. Struct. 2018, 1173, 557. doi: 10.1016/j.molstruc.2018.07.007

    34. [34]

      Thakkar, S. S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V. R. Bioorg. Med. Chem. 2017, 25, 5396. doi: 10.1016/j.bmc.2017.07.057

    35. [35]

      Xie, X. X.; Li, H.; Wang, J.; Mao, S.; Xin, M. H.; Lu, S. M.; Mei, Q. B.; Zhang, S. Q. Bioorg. Med. Chem. 2015, 23, 6477. doi: 10.1016/j.bmc.2015.08.013

    36. [36]

      Cai, J.; Sun, M.; Wu, X.; Chen, J.; Wang, P.; Zong, X.; Ji, M. Eur. J. Med. Chem. 2013, 63, 702. doi: 10.1016/j.ejmech.2013.03.013

  • Figure 1  Structures of some 4-aminoquinazoline derivatives and derivatives containing benzothiazole

    Figure 1  Synthesis of compounds 13a~13t

    Figure 2  Predicted binding model of (A) gefitinib and (B) compound 13n with EGFR (selected residues MET793 in EGFR are shown, Dashed lines indicate hydrogen bonds)

    Table 1.  Antiproliferative activity [IC50/(μmol•L-1)] of target compounds 13a~13t against four cancer cell linesa

    Compd. R1 MCF-7 MGC-803 PC-3 HGC-27
    13a 4-Cl 19.05±1.28 8.30±0.92 20.12±1.01 8.49±0.92
    13b 3-Cl 27.67±1.44 >50 10.78±1.03 21.44±1.42
    13c H >50 25.84±1.20 24.42±1.15 22.52±1.35
    13d 2-Cl >50 >50 8.84±0.64 >50
    13e 4-F 20.66±1.31 9.55±0.98 10.34±1.01 16.62±1.21
    13f 2-OCH3 >50 >50 >50 >50
    13g 2-OCH2CH3 >50 >50 49.92±1.69 >50
    13h 4-OCH2CH3 >50 >50 19.78±1.29 >50
    13i 4-OCH3 >50 >50 15.024±1.177 >50
    13j 3-F 47.45±1.67 14.18±1.20 8.77±0.34 10.20±1.00
    13k 2-F >50 >50 14.42±1.15 13.24±1.12
    13l 3-OCH3 37.40±1.57 >50 13.64±1.14 18.76±1.27
    13m 2-CH2CH3 >50 12.66±1.10 17.16±1.10 12.54±1.09
    13n 3-Cl-4-F 6.01±0.54 7.63±0.48 6.16±0.34 7.59±0.62
    13o 3-CF3 11.71±1.06 9.47±0.97 19.64±0.74 7.80±0.89
    13p 3, 4, 5-(OCH3)3 >50 >50 18.28±1.26 36.71±156
    13q 4-CH2CH3 >50 >50 14.99±1.17 23.77±1.37
    13r 2-CH3 >50 13.57±1.11 9.98±1.02 15.42±1.18
    13s 3-CH3 >50 >50 17.45±1.23 22.42±1.35
    13t 4-CH3 >50 14.23±1.15 17.49±1.24 18.88±1.27
    Gefitinibb 7.34±0.86 8.82±0.63 7.99±0.54 12.44±0.87
    Antiproliferative was assayed by exposure for 72 h to substances and expressed as concentration required to inhibit tumor cells proliferation by 50% (IC50). b Used as a positive control.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  21
  • 文章访问数:  1495
  • HTML全文浏览量:  140
文章相关
  • 发布日期:  2020-07-01
  • 收稿日期:  2020-02-26
  • 修回日期:  2020-04-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章