

Citation: Jia Xiaofei, Ren Xinyi, Wang Zheng, Xia Chungu, Ding Kuiling. Pyrrolyl-Based Phosphoramidite/Rh Catalyzed Asymmetric Hydroformylation of 1, 1-Disubstituted Olefins[J]. Chinese Journal of Organic Chemistry, 2019, 39(1): 207-214. doi: 10.6023/cjoc201809033

手性吡咯亚磷酰胺/Rh催化的1, 1-双取代烯烃的不对称氢甲酰化反应
English
Pyrrolyl-Based Phosphoramidite/Rh Catalyzed Asymmetric Hydroformylation of 1, 1-Disubstituted Olefins
-
Key words:
- hydroformylation
- / olefin
- / Rhodium
- / asymmetric catalysis
- / phosphoramidite
-
烯烃不对称氢甲酰化反应是制备手性醛类的一类原子经济性的方法[1], 而手性醛是合成医药和农药一类重要的中间体[2].与其它类型不对称催化反应(如氢化反应)的相比, 烯烃不对称氢甲酰化反应中手性催化剂的研究进展相对滞后.一个重要的挑战在于如何在较高的反应温度下(60~100 ℃), 解决烯烃不对称氢甲酰化的化学选择性、区域选择性和对映选择性控制问题.自从1993年Nozaki和Takaya[3]首次将Binaphos成功用于烯烃的不对称氢甲酰化反应以来, 铑催化的不对称氢甲酰化反应在配体发展和底物类型方面均取得了一定进展[4].但是, 至今为止报道的方法仍主要适用于单取代[4]和1, 2-二取代的烯烃底物的不对称氢甲酰化[5].另一方面, 对于更加困难的1, 1-双取代烯烃的不对称氢甲酰化反应则研究较少[6].在20世纪80年代, Kollár等[7]将Pt/Sn和手性双膦配体组成的催化剂用于甲基丙烯酸甲酯和衣康酸的氢甲酰化反应, 仅取得了中等的对映选择性. 2011年以来, Wang和Buchwald[8]将含有膦手性的配体用于铑催化1, 1-双取代烯烃的不对称氢甲酰化反应, 以较高的区域选择性和对映选择性得到相应的手性醛.但膦手性的配体难以制备并且容易氧化, 会影响其在工业上的应用.近期也有其它类型的手性膦配体应用于该类烯烃底物不对称氢甲酰化反应的报道, 但仅得到较低到中等对映选择性的产物[9].最近, 张绪穆等[10]将Rh/(S, R)-YanPhos成功应用于1, 1-双取代烯烃的不对称氢甲酰化反应, 反应底物主要为芳基乙烯衍生物.因此, 发展烯烃底物兼容性好的高效不对称氢甲酰化催化剂, 具有重要的意义.本文发展了一类易于制备的吡咯取代手性双亚磷酰胺配体, 并将其成功应用于铑催化的1, 1-双取代烯烃的不对称氢甲酰化反应, 以优秀的区域选择性、良好的化学选择性和对映选择性得到相应的直链手性醛.
1. 结果与讨论
用光学纯的联萘二酚及衍生物与N, N-二吡咯磷氯在温和条件下一步反应, 方便地得到一系列的手性N-吡咯基亚磷酰胺配体(S)-L1~L5(图 1, 收率84%~93%).在此基础上, 考察这些手性配体在铑催化的1, 1-双取代烯烃不对称氢甲酰化反应中的应用.首先以α-苄基丙烯酸甲酯1a为模型底物, Rh(acac)(CO)2/L1为催化剂, 十三烷为溶剂, H2/CO总压为1.01 MPa, 依次考察了Rh/L1比例、H2/CO分压、反应温度、催化剂用量和溶剂等一系列反应条件对反应催化效果的影响(表 1).
图 1
表 1
表 1 Rh(I)/(S)-L1催化α-苄基丙烯酸甲酯不对称氢甲酰化反应条件筛选aTable 1. Optimization of reaction conditions for the Rh(I)/(S)-L1 catalyzed AHF of methyl 2-benzylacrylateEntry Rh/L1 p(H2)/kPa p(CO)/kPa T/℃ Conv.b/% 2a Yieldb/% Yieldb/% eec/% 3a 4a 1 1:1 507 507 80 100 31 75 0 69 2 1:2 507 507 80 98 83 84 2 13 3 1:3 507 507 80 93 79 83 2 12 4 1:2 507 507 70 81 50 88 2 29 5 1:2 507 507 90 98 81 82 3 13 6 1:2 811 203 80 97 78 83 6 14 7 1:2 203 811 80 93 80 84 1 12 8d 1:2 507 507 90 98 81 83 4 13 9e 1:2 507 507 90 89 76 80 2 11 10f 1:2 507 507 80 86 70 79 2 14 aReaction conditions: 1a (0.25 mmol), Rh(CO)2(acac) (1.0 mol%), tridecane (1.0 mL), L1, 12 h. b GC yields and conversions are reported. The yields of the branched product 5a were found to be<1% in all cases. c The ee values were determined by chiral GC. d S/C=1000, 15 h. e S/C=10000, 24 h. f Toluene (1.0 mL) as the solvent. 从表 1的数据可以看到, 反应以优秀的区域选择性(2a/5a>30/1)得到直链醛2a, 这是由于在配体结构中的吡咯单元可作为π-酸受体, 从而有利于氢甲酰化反应中生成直链醛[11].研究发现, Rh/L1比例改变对该反应的化学选择性[2a/(3a+4a)]影响较大(Entries 1~3).当配体L1和Rh(CO)2(acac)的物质的量比为1:1时, 产物2a的收率较低(31%), 且得到大量的异构化产物4a (Entry 1).将Rh/L1物质的量比例调整到1:2时, 2a的收率提高到83%, ee值达到84% (Entry 2).进一步将Rh/L1比例调到1:3时, 2a收率降低到79% (Entry 3).因此, 后续的反应研究使用1:2的Rh/L1物质的量比.温度对反应的选择80 ℃降低到70 ℃时, 产物的ee值从84%提高到88%, 性和催化剂的活性也有着较显著的影响.当反应温度从但收率大大降低且异构化严重(Entry 4);提高温度至90 ℃, 导致ee值降低到82% (Entry 5).保持H2/CO的总压为10 atm, 从5/5 atm的分压分别调节到8/2 atm或2/8 atm, 导致产物2a的收率下降(Entries 6~7 vs. 2).对催化剂的用量也进行了考察.当催化剂与底物的摩尔比例为1:1000时, 产物2a的收率和ee值基本保持, 而反应时间需延长到15 h (Entry 8).当催化剂与底物的摩尔比为1:10000时, 反应时间延长至24 h, 产物2a的收率和ee值均略有降低, TON达8900 (Entry 9).在其它反应条件相同的情况下, 对比了分别以甲苯和十三烷为溶剂的反应结果, 发现后者效果更好(Entry 10 vs. 2).综合来看, Entry 2为最优反应条件, 即1a在H2/CO=5/5 atm下十三烷中, 以1 mol%催化剂用量(Rh/L1=1/2)在80 ℃反应12 h, 以良好的收率(83%)和高达84% ee值得到直链手性醛2a.
对于1a的不对称氢甲酰化反应, 进一步对吡咯基的亚磷酰胺配体(S)-L2~L5的进行了筛选考察(表 2).在优化的反应条件下, 都以优秀的区域选择性得到了直链手性醛2a, 未检测到支链醛5a, 且配体的改变对氢化3a和异构化产物4a的含量影响不大(Entries 1~5).另一方面, 配体联萘骨架的改变对产物2a的ee值有较大的影响.当3, 3'位置修饰的联萘配体L2~L4分别应用于反应时, 产物2a的ee值有不同程度的降低(Entries 2~4 vs. 1).特别当L4作为配体时, 产物2a的ee值大大降低, 且绝对构型翻转.当联萘骨架部分氢化的配体L5应用于反应时, 催化效果不如配体L1, 异构化产物4a的含量增多, 产物2a的收率和ee值均有下降(Entry 5 vs. 1).因此在上述筛选中发现, 在(S)-L1到L5中(S)-L1是最优选的配体.
表 2
Entrya L Conv.b/% 2a Yieldb/% Yieldb/% eec/% 3a 4a 1 L1 98 83 84 2 13 2 L2 87 62 73 7 18 3 L3 82 60 68 6 16 4 L4 98 83 -13 6 8 5 L5 98 73 74 2 23 a Reaction conditions: 1a (0.25 mmol), CO (507 kPa), H2 (507 kPa), Rh(CO)2(acac) (1.0 mol%), L (2.0 mol%), tridecane (1.0 mL), 80 ℃, 12 h. b GC yield are reported. c The ee values were determined by chiral GC. 以Rh(acac)(CO)2/(S)-L1为催化剂, 在优化的反应下进一步对1, 1-双取代烯烃不对称氢甲酰化反应底物进行了拓展.如表 3所示, 不同α烷基取代的底物1a~1m均适用于该催化体系, 以良好的收率(64%~87%)和较高的对映选择性(71%~86% ee)得到相应的手性醛产物2a~2m.其中, 烯酮类底物1f在相同条件下不对称氢甲酰化产物ee值与酯基底物1c的反应产物ee值相近(2f vs. 2c).底物1g~1i含有TBSO、CN或COOMe基团, 也可以在反应中兼容, 以64%~87%收率和75%~86% ee值得到相应的醛(2g~2i).特别是含有如呋喃、噻吩或吡啶基等杂环取代基的底物也顺利反应, 以高收率(85%~87%)和高对映选择性(84%~86% ee)得到相应的手性氢甲酰化产物2k~2m.
表 3
a Reaction conditions: 1a~1m (0.25 mmol), CO (507 kPa), H2 (507 kPa), Rh(CO)2(acac) (1.0 mol%), (S)-L1 (2.0 mol%), tridecane (1.0 mL), 80 ℃, 12 h. Yields are for the isolated products. The ee values were determined by chiral GC or chiral HPLC. The absolute configurations of 2c, [12] 2g, [8a] and 2j[13] were assigned to be R by comparison of their specific rotations with the literature values, while the configurations of the other products were deduced by comparison of the CD spectra of 2a~2m. 为了探究催化剂构效关系, 对该不对称氢甲酰化反应体系中, 配体L1或L5与Rh(acac)(CO)2在CO/H2氛围下形成的物种进行了表征.在反应釜中, 以氘代苯为溶剂, 等摩尔当量的配体L1(或L5)与Rh(acac)(CO)2混合, 充入2.03 MPa CO/H2 (V:V=1:1)后在40 ℃下搅拌过夜, 反应得到相应的催化剂前体RhH(L)(CO)2, 并通过1H NMR、31P NMR和红外对其进行了表征.羰基铑氢物种[HRh(CO)2L1]和[HRh(CO)2L5]的谱图数据见表 4.从氢谱中可以发现, 与铑键合的H的信号出现在δ -10.3或-10.4, 其中[HRh(CO)2L1]的谱图中该H峰形为dt峰, Rh—H和P—H的偶合常数与van Leeuwen报道的该类结构化合物数据相似[11b].从[HRh(CO)2L1]和[HRh(CO)2L5]的31P NMR数据中可以看到, P信号的化学位移在δ 137左右, 峰形为d峰(J=216 Hz).该现象表明, 这两个RhH(L)(CO)2类型的络合物物种的结构中与Rh络合两个P原子互为对称.另外, 二者的红外光谱中均出现两个羰基的伸缩振动峰, 表明这两个物种的结构中皆分别存在两个CO, 且处于非对称的位置.综合以上数据, 可以推测催化剂[HRh(CO)2L1]为三角双锥结构, 其中两个P原子采用eq-eq形式与Rh(I)中心配位[图 2(a)].结合铑催化的烯烃氢甲酰化反应机理, 可以推测, 手性直链醛2的对映选择性取决于Rh—H键对配位的烯烃双键的插入形成C—H键和Rh烷基物种的过程. [RhH(L1)(CO)]和烯烃的配位方式, 对该步插入反应具有重要的决定作用.有鉴于此, 我们提出该不对称氢甲酰化反应的手性诱导模型.如图 2(b)所示, 催化活性物种[HRh(1)(CO)L1]采取三角双锥结构, 其中配体L1的磷原子分别占据两个赤道位置(eq-eq), H和CO则位于双锥的锥顶, 而烯烃底物位于剩余的赤道位置, 并通过C=C与Rh配位. Rh—H向C=C迁移插入后得到末端碳与Rh相连的烷基铑物种, 后者经Rh中心上的羰基插入、H2氧化加成和酰基-H还原消除等步骤, 得到(R)-2, 并再生活性物种重新进入催化循环.另外, 从图 2所示的模型还可以看出, P原子上四个吡咯基分布在四象限中, 1, 3象限中的两个在前, 2, 4象限中的两个在后, 这种吡咯基在空间上的取向差异是氢甲酰化过程产生对映选择性的根源.随着3, 3'-位引入取代基空间位阻的增加, 势必影响2, 4象限中两个在后的吡咯基更加向前, 导致在1, 3象限和2, 4象限中空间位阻差异减小, 导致反应的对映选择性下降, 甚至逆转(L4, 取代基为苯基时).
表 4
表 4 [HRh(CO)2(L1)]和[HRh(CO)2(L5)]的谱图数据Table 4. Spectroscopic data of [HRh(CO)2(L1)] and [HRh(CO)2(L5)] complexesComplex δ (1H) δ(31P) JHP/Hz JHRh/Hz JRhP/Hz vCO/cm-1 [HRh(CO)2(L1)] -10.4 (dt) 136.9 3.0 3.0 216 2074, 2021 [HRh(CO)2(L5)] -10.3 (m) 137.6 n.d. a n.d. a 216 2076, 2018 an.d=not determined. 图 2
2. 结论
本文发展了一类高效的Rh与手性吡咯基亚磷酰胺配体形成的催化剂, 在催化1, 1-双取代烯烃的不对称氢甲酰化反应中, 以优秀的区域选择性、良好的化学选择性和对映选择性(71%~86% ee)得到相应的手性直链醛, 反应的催化转化数TON值最高达到8900.该类催化剂容易制备, 且具有较广泛的官能团兼容性, 为手性α-烷基-β-甲酰基丙酸酯类化合物的合成提供了一类新的有效方法.
3. 实验部分
3.1 仪器与试剂
对空气或湿气敏感的实验利用手套箱和标准Schlenk技术, 在氩气氛围下操作完成. 1H NMR, 13C NMR, 31P NMR谱在Varian Mercury VX300或Varian 400-MR核振共振仪上测定, 1H NMR (300 MHz)或1H NMR (400 MHz)的内标为TMS (δ 0.0)、CDCl3 (δ 7.26)或DMSO-d6 (δ 2.50), 13C NMR (75 MHz)或13C NMR (100 MHz)的内标为CDCl3 (δ 77.0)或DMSO-d6 (δ 39.5). CD在JASCO J-810 Spectropolarimeter上测定. IR在NICOLET AVATAR 330 FTIR或BRUKER TENSOR 27 FT-IR红外光谱仪上测定. EI-MS在AGILENT 5973N型质谱仪上测定; ESI-MS采用Agilent LC/MSD SL或Shimadzu LCMS-2010EV型质谱仪测定; EI-HRMS在Waters GCT CA176型质谱仪上测定; ESI-HRMS在BRUKER DALTONICS APEX Ⅲ质谱仪上测定; MALDI-HRMS在Ion Spec 4.7 Tesla FTMS质谱仪上测定.比旋光值在Perkin-Elmer 341MC自动旋光仪上测定. ee值通过JASCO 2089 HPLC或Agilent 7820A GC测定.元素分析(EA)在Elementar VARIO EL Ⅲ型仪器上测定.固体商业试剂除特别说明外, 未经纯化直接使用; 液体试剂经蒸馏纯化后使用.四氢呋喃、乙醚、甲苯等经钠丝干燥处理后使用, 二氯甲烷和三乙胺等经氢化钙干燥处理后使用.
3.2 实验方法
3.2.1 手性联萘双齿亚磷酰胺(S)-L1~L5的合成
氩气氛下向一50-mL的Schlenk管中分别加入二吡咯磷氯(595.7 mg, 3.0 mmol)、三乙胺(0.42 mL, 3.0 mmol)和无水四氢呋喃(2 mL).将混合物冷却至0 ℃, 向反应体系中滴加手性联萘二酚(1.0 mmol)的四氢呋喃(2 mL)溶液, 反应混合物缓慢升至室温并搅拌过夜.停止反应, 快速过滤胺盐, 减压除去溶剂, 粗产品经硅胶柱层析分离纯化, 得到相应的手性配体(S)-L.
(S)-2, 2'-二(二-N-吡咯磷氧基)-1, 1'-联萘[(S)-L1]:无色油状液体, 84%产率.
$[\alpha ]_{\text{D}}^{20}$ +21.8 (c=1.0, CHCl3). 1H NMR (CDCl3, 300 MHz) δ: 7.88 (d, J=8.4 Hz, 4H), 7.43 (t, J=6.6 Hz, 2H), 7.33~7.21 (m, 4H), 7.13 (d, J=9.0 Hz, 2H), 6.45 (d, J=1.2 Hz, 8H), 6.11 (d, J=15.0 Hz, 8H); 31P NMR (121 MHz, CDCl3) δ: 109.2.(S)-3, 3'-二甲基-2, 2'-二(二-N-吡咯磷氧基)-1, 1'-联萘[(S)-L2]:无色油状液体, 64%产率.
$[\alpha ]_{\text{D}}^{20}$ +248.4 (c=1.0, CHCl3). 1H NMR (CDCl3, 400 MHz) δ: 7.59 (d, J=8.0 Hz, 2H), 7.42 (s, 2H), 7.23 (d, J=7.2 Hz, 2H), 7.10~7.04 (m, 4H), 6.57~6.44 (m, 8H), 6.03~5.99 (m, 8H), 1.79 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 150.11, 150.05, 149.99 132.9, 131.0, 130.7, 130.3, 127.2, 126.3, 125.8, 125.1, 122.37, 122.34, 122.31, 121.2, 121.08, 121.03, 121.0, 120.8, 120.7, 120.65, 111.88, 111.86, 111.83, 111.29, 111.26, 111.24, 17.2; 31P NMR (161 MHz, CDCl3) δ: 105.8; FTIR (neat) ν: 3058, 2926, 2855, 1723, 1499, 1455, 1191, 1056, 1037, 731 cm-1. HRMS (MALDI/DHB) calcd for C38H32N4NaO2P2 ([M+Na]+): 661.1893, found 661.1908.(S)-3, 3'-二乙基-2, 2'-二(二-N-吡咯磷氧基)-1, 1'-联萘[(S)-L3]:无色油状液体, 92%产率.
$[\alpha ]_{\text{D}}^{20}$ +211.3 (c=1.0, CHCl3). 1H NMR (CDCl3, 400 MHz) δ: 7.73 (d, J=8.0 Hz, 2H), 7.54 (s, 2H), 7.35 (t, J=6.8 Hz, 2H), 7.20 (t, J=7.2 Hz, 2H), 7.14 (d, J=8.0 Hz, 2H), 6.63 (t, J=1.6 Hz, 4H), 6.53 (t, J=1.6 Hz, 4H), 6.09 (t, J=2.0 Hz, 4H), 6.06 (t, J=2.0 Hz, 4H), 2.30~2.14 (m, 4H), 1.03 (t, J=7.2 Hz, 6H); 13C NMR (CDCl3, 100 MHz) δ: 149.9 (d, J=5.9 Hz), 149.8 (d, J=5.6 Hz), 135.7, 132.9, 131.1, 128.7, 127.4, 126.3 (d, J=1.4 Hz), 126.29 (d, J=1.5 Hz), 125.8, 125.1, 122.4 (d, J=2.4 Hz), 122.3 (d, J=3.0 Hz), 121.1, 121.0, 120.9, 120.8, 120.7, 120.6, 111.8 (d, J=2.4 Hz), 111.7 (d, J=2.3Hz), 111.3 (d, J=2.5 Hz), 111.8 (d, J=2.3 Hz), 23.3, 13.4; 31P NMR (161 MHz, CDCl3) δ: 105.3; FTIR (neat) ν: 2964, 2931, 2873, 1728, 1451, 1427, 1178, 1053, 1036, 803, 729 cm-1; ESI-MS m/z: 689 (M+Na+); HRMS (MALDI/DHB) calcd for C40H36N4NaO2P2 (M+Na+): 689.2206, found 689.2191.(S)-3, 3'-二苯基-2, 2'-二(二-N-吡咯磷氧基)-1, 1'-联萘[(S)-L4]:无色油状液体, 93%产率.
$[\alpha ]_{\text{D}}^{20}$ +115.0 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 7.81~7.78 (m, 4H), 7.40~7.36 (m, 2H), 7.32~7.20 (m, 14H), 6.23 (t, J=2.0 Hz, 4H), 6.19 (t, J=2.0 Hz, 4H), 5.90 (t, J=2.0 Hz, 4H), 5.81 (t, J=2.0 Hz, 4H); 13C NMR (CDCl3, 100 MHz) δ: 148.05, 147.99, 147.94, 137.6, 134.32, 134.3, 134.29, 133.3, 131.8, 131.0, 129.7, 128.1, 127.4, 126.8, 126.1, 125.5, 123.43, 123.4, 123.38, 120.8, 120.69, 120.64, 120.61, 120.56, 120.46, 111.35, 111.32, 111.30, 111.26, 111.23, 111.20; 31P NMR (161 MHz, CDCl3) δ: 105.1; FTIR (neat) ν: 3057, 2963, 2928, 1727, 1495, 1451, 1260, 1177, 1053, 1035, 797, 729 cm-1. HRMS (MALDI/DHB) calcd for C48H36N4NaO2P2 [M+Na+]: 785.2206, found 785.2206.(S)-5, 5', 6, 6', 7, 7’, 8, 8'-八氢-2, 2'-二(二-N-吡咯磷氧基)-1, 1'-联萘[(S)-L5]: 无色油状液体, 93%产率.
$[\alpha ]_{\text{D}}^{20}$ -47.9 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 6.97 (d, J=8.4 Hz, 2H), 6.69~6.67 (m, 6H), 6.58~6.56 (m, 4H), 6.21 (t, J=2.4 Hz, 4H), 6.18 (t, J=2.0 Hz, 4H), 2.69~2.68 (m, 4H), 2.33~2.56 (m, 2H), 2.17~2.10 (m, 2H), 1.67~1.55 (m, 8H); 13C NMR (CDCl3, 100 MHz) δ: 148.4 (d, J=2.4 Hz), 148.3 (d, J=5.6 Hz), 137.5, 133.9, 129.7, 127.64 (d, J=1.5 Hz), 127.63 (d, J=2.1 Hz), 121.2, 121.1, 121.0, 120.9, 116.3 (d, J=5.6 Hz), 116.2 (d, J=6.0 Hz), 112.1 (d, J=2.1 Hz), 112.0 (d, J=2.8 Hz), 111.9 (d, J=2.6 Hz), 111.87 (d, J=2.6 Hz), 29.3, 27.4, 22.6, 22.59; 31P NMR (161 MHz, CDCl3) δ: 108.0.3.2.2 Rh(I)/(S)-L催化的1, 1-双取代烯烃不对称氢甲酰化反应
在手套箱中, 向一10 mL的氢化瓶中依次加入Rh(acac)(CO)2 (0.65 mg, 0.0025 mmol)、配体(S)-L (3.3 mg, 0.005 mmol)和正十三烷(1.0 mL).搅拌5 min后, 加入烯烃底物(0.25 mmol)和内标正癸烷(49 µL, 0.25 mmol).然后将氢化瓶转入反应釜中, 封好移出手套箱.反应釜用H2气置换3次后, 依次充入H2 (507 kPa)和CO (507 kPa)气体.反应至于80 ℃搅拌12 h.停止反应, 将反应釜用冰水冷却, 通风橱内小心放掉反应气体, 粗产物经柱层析分离, 得到手性醛, 并用HPLC或者GC测定ee值.
(R)-2-苄基-4-氧代丁酸甲酯(2a): 无色油状液体, 81%产率, 84% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 3.5 mL/min, method: ramp from 60 ℃ to 120 ℃ at 2.5 ℃/min, 120 ℃ for 5 min, ramp from 120 ℃ to 130 ℃ at 2.5 ℃/min, 130 ℃ for 10 min: tR=47.9 min (S), tR=48.4 min (R).
$[\alpha ]_{\text{D}}^{20}$ +17.3 (c=1.0, CHCl3); 1H NMR (CDCl3, 300 MHz) δ: 9.68 (s, 1H), 7.32~7.13 (m, 5H), 3.67 (s, 3H), 3.21~3.04 (m, 2H), 2.88~2.72 (m, 2H), 2.55~2.48 (m, 1H); 13C NMR (CDCl3, 75 MHz) δ: 200.0, 174.5, 138.0, 128.9, 128.5, 126.7, 51.9, 44.2, 40.7, 37.5;(R)-2-苯乙基-4-氧代丁酸乙酯(2b): 无色液体, 72%产率, 82% ee. HPLC: Chiralcel OJ-3 column. V(hexane)/ V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR=13.7 min (S), tR=16.6 min (R).
$[\alpha ]_{\text{D}}^{20}$ +22.1 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.74 (s, 1H), 7.30~7.16 (m, 5H), 4.16 (q, J=7.2 Hz, 2H), 2.94~2.88 (m, 2H), 2.66~2.59 (m, 3H), 2.03~1.75 (m, 2H), 1.27 (t, J=7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 199.9, 174.4, 140.9, 128.4, 128.3, 126.0, 60.7, 45.3, 38.6, 33.5, 33.1, 14.1; FTIR (neat) ν: 2982, 2728, 1726, 1634, 1456, 1381, 1182, 1025, 739, 701 cm-1. HRMS (ESI) calcd for C14H18NaO3 ([M+Na]+): 257.1148, found 257.1156.(R)-2-甲基-4-氧代丁酸甲酯(2c):无色液体, 73%产率, 73% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 2.0 mL/min, method: ramp from 50 ℃ to 120 ℃ at 2.0 ℃/min, 120 ℃ for 10 min, tR=16.6 min (S), tR=18.0 min (R).
$[\alpha ]_{\text{D}}^{20}$ -1.0 (c=1.0, CHCl3) {lit.[13]$[\alpha ]_D^{22}$ +1.4 (c=1.15, CHCl3) for (S)-2c with 91% ee}; 1H NMR (CDCl3, 400 MHz) δ: 9.77 (s, 1H), 3.70 (s, 3H), 3.00~2.88 (m, 2H), 2.58~2.52 (m, 2H), 1.23 (d, J=7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 200.1, 175.6, 51.9, 46.8, 33.4, 17.0;(R)-2-丁基-4-氧代丁酸乙酯(2d):无色液体, 75%产率, 80% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 3.5 mL/min, method: ramp from 50 ℃ to 100 ℃ at 5.0 ℃/min, 100 ℃ for 10 min, ramp from 100 ℃ to 110 ℃ at 2.0 ℃/min, 110 ℃ for 20 min: tR=18.7 min (S), tR=19.1 min (R).
$[\alpha ]_{\text{D}}^{20}$ -11.8 (c=1.0, CHCl3) {lit.[14]$[\alpha ]_{\text{D}}^{20}$ -8.2 (c=1.10, CHCl3) for (R)-2d with unknown optical purity}; 1H NMR (CDCl3, 400 MHz) δ: 9.77 (s, 1H), 4.15 (q, J=6.4 Hz, 2H), 2.89~2.86 (m, 2H), 2.57~2.53 (m, 1H), 1.71~1.49 (m, 2H), 1.32~1.25 (m, 7H), 0.89 (t, J=7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 200.3, 174.8, 60.6, 45.3, 38.9, 31.5, 29.0, 22.4, 14.1, 13.8;(R)-2-异丁基-4-氧代丁酸乙酯(2e):无色液体, 85%产率, 85% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 3.5 mL/min, method: ramp from 50 ℃ to 160 ℃ at 10.0 ℃/min: tR=7.84 min (S), tR=7.90 min (R).
$[\alpha ]_{\text{D}}^{20}$ -14.8 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.76 (s, 1H), 4.15 (q, J=7.2 Hz, 2H), 2.98~2.91 (m, 1H), 2.87~2.81 (m, 1H), 2.57~2.52 (m, 1H), 1.62~1.58 (m, 2H), 1.28~1.25 (m, 4H), 0.95~0.89 (m, 6H); 13C NMR (CDCl3, 100 MHz) δ: 200.3, 175.1, 60.6, 45.8, 41.1, 37.2, 25.8, 22.4, 22.2, 14.1; FTIR (bneat) ν: 2958, 2931, 2872, 1726, 1467, 1385, 1180 cm-1. HRMS (EI) calcd for C9H18O2 [M-CO]+ 158.1307, found 158.1306.(R)-3-甲基-4-氧代-2-丁酮(2f):无色液体, 86%产率, 71% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 2.5 mL/min, method: ramp from 40 ℃ to 130 ℃ at 2.0 ℃/min, 130 ℃ for 10 min; tR=16.4 min (R), tR=17.5 min (S).
$[\alpha ]_{\text{D}}^{20}$ +36.6 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.74 (s, 1H), 3.10~2.93 (m, 2H), 2.44 (dd, J=7.2, 11.6Hz, 1H), 2.24 (s, 3H), 1.17 (d, J=7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 210.4, 200.4, 46.4, 40.7, 28.2, 16.5;(R)-5-(叔丁基二甲基硅氧基)-2-(2-氧代乙基)戊酸乙酯(2g):无色液体, 80%产率, 75% ee. HPLC: Lux 5μ Amylose-2 column. V(Hexane):V(isopropanol)=99:1, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR1=7.0 min (S), tR1=7.7 min (R).
$[\alpha ]_{\text{D}}^{20}$ +0.4 (c=1.0, CHCl3) {lit.[9]$[\alpha ]_D^{25}$ +11 (c=0.34, CHCl3) for (R)-2g with 81% ee}; 1H NMR (CDCl3, 400 MHz) δ: 9.74 (s, 1H), 4.13 (q, J=7.2 Hz, 2H), 3.59 (t, J=6.4 Hz, 2H), 2.92~2.83 (m, 2H), 2.57~2.49 (m, 1H), 1.73~1.46 (m, 4H), 1.24 (t, J=7.2 Hz, 3H), 0.86 (s, 9H), 0.02 (s, 6H); 13C NMR (CDCl3, 100 MHz) δ: 200.2, 174.7, 62.5, 60.7, 45.3, 38.7, 30.0, 28.3, 25.9, 18.2, 14.1, -5.4;(R)-5-氰基-2-(2-氧代乙基)戊酸乙酯(2h):无色液体, 87%产率, 86% ee. HPLC: Chiralcel OJ-3 column. V(Hexane):V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=214 nm, tR1=69.4 min (S), tR1=76.8 min (R).
$[\alpha ]_{\text{D}}^{20}$ +12.6 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.77 (s, 1H), 4.17 (q, J=7.2 Hz, 2H), 2.97~2.92 (m, 2H), 2.64~2.56 (m, 1H), 2.40 (d, J=6.8 Hz, 2H), 1.82~1.67 (m, 4H), 1.27 (t, J=7.2 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ: 199.5, 173.8, 119.0, 60.9, 45.2, 38.1, 30.6, 22.9, 16.9, 14.0; FTIR (neat) ν: 3595, 3540, 2982, 2249, 1728, 1636, 1460, 1382, 1184, 1093 cm-1. HRMS (ESI) calcd for C10H19N2O4 (Oxidant, [M+O+NH4]+) 231.1339, found 231.1336.(R)-2-(2-氧代乙基)丁二酸二甲酯(2i):无色液体, 64%产率, 78% ee. GC: CP Chirasil-Dex CB, 25 m×0.25 mm×0.39 mm, flow rate 2.5 mL/min, method: ramp from 60 ℃ to 100 ℃ at 5.0 ℃/min, 100 ℃ for 10 min, ramp from 100 ℃ to 110 ℃ at 1.0 ℃/min, 110 ℃ for 20 min: tR=26.8 min (R), tR=27.2 min (S).
$[\alpha ]_{\text{D}}^{20}$ -3.0 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.77 (s, 1H), 3.71 (s, 3H), 3.69 (s, 3H), 3.36~3.33 (m, 1H), 2.98 (ddd, J=18.4, 6.8, 0.8 Hz, 1H), 2.80~2.72 (m, 2H), 2.61 (dd, J=16.8, 6.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 199.2, 173.4, 171.7, 52.2, 51.8, 44.3, 35.0, 34.8;(R)-2-苄基-4-氧代丁酸苯甲酯(2j):无色液体, 81%产率, 85% ee. HPLC: Chiralcel OJ-3 column. V(hexane):V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR=32.8 min (S), tR=34.2 min (R).
$[\alpha ]_{\text{D}}^{20}$ +9.1 (c=1.0, CHCl3) {lit.[17] [α]D=+16.1 (c=0.6, CHCl3) for (R)-2j with unknown optical purity}. 1H NMR (CDCl3, 400 MHz) δ: 9.67 (s, 1H), 7.34~7.21 (m, 8H), 7.12~7.10 (m, 2H), 5.09 (s, 2H), 3.27~3.22 (m, 1H), 3.09~3.04 (dd, J=13.6, 6.8 Hz, 1H), 2.84 (ddd, J=18.4, 8.8, 0.8 Hz, 1H), 2.77 (dd, J=14, 8.4 Hz, 1H) 2.52 (d, J=18.4, 4.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 199.8, 173.8, 137.9, 135.5, 128.9, 128.5, 128.4, 128.17, 128.15, 126.7, 66.6, 44.3, 40.8, 37.5; FTIR (neat) ν: 3030, 2728, 2830, 1722, 1496, 1454, 1387, 1163, 742, 697 cm-1. HRMS (ESI) calcd for C18H22NO3 ([M+NH4]+): 300.1594, found 300.1593.(R)-2-苄基-4-氧代丁酸2-α-吡啶乙酯(2k):无色液体, 86%产率, 84% ee. HPLC: Chiralcel OJ-3 column. V(hexane):V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR=41.0 min (S), tR=42.5 min (R).
$[\alpha ]_{\text{D}}^{20}$ +14.7 (c=1.0, CHCl3); 1H NMR (CDCl3, 300 MHz) δ: 9.63 (s, 1H), 8.54 (d, J=5.6 Hz, 1H), 7.60 (t, J=10.0 Hz, 1H), 7.29~7.09 (m, 7H), 4.48 (t, J=8.8 Hz, 2H), 3.16~2.98 (m, 4H), 2.82~2.66 (m, 2H), 2.50~2.43 (m, 1H); 13C NMR (CDCl3, 100 MHz) δ: 199.8, 173.7, 157.7, 149.2, 137.9, 136.3, 128.8, 128.4, 126.6, 123.4, 121.5, 63.8, 44.1, 40.7, 37.3, 37.0; FTIR (neat) ν: 3384, 2970, 2930, 1727, 1597, 1455, 1439, 1380, 1163, 952, 701 cm-1. HRMS (ESI) calcd for C18H20NO3 ([M+H]+) 298.1438, found 298.1436.(R)-2-苄基-4-氧代丁酸2-α-呋喃甲酯(2l):无色液体, 85%产率, 86% ee. HPLC: Chiralcel OJ-3 column. V(Hexane):V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR=27.3 min (S), tR=29.9 min (R).
$[\alpha ]_{\text{D}}^{20}$ +1.7 (c=1.0, CHCl3); 1H NMR (CDCl3, 400 MHz) δ: 9.66 (s, 1H), 7.41~7.40 (m, 1H), 7.27~7.20 (m, 3H), 7.10~7.08 (m, 2H), 6.38~6.35 (m, 2H), 5.1~5.02 (m, 2H), 3.24~3.17 (m, 1H), 3.05 (dd, J=13.6, 6.0 Hz, 1H), 2.81 (ddd, J=18.4, 6.0, 0.8 Hz, 1H), 2.76 (dd, J=14, 8.4 Hz, 1H), 2.5 (ddd, J=18.4, 4.8, 0.4 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 199.7, 173.5, 149.1, 143.2, 137.8, 128.9, 128.5, 126.7, 110.7, 110.5, 58.3, 44.1, 40.7, 37.3; FTIR (neat) ν: 3435, 2973, 2929, 2900, 1726, 1497, 1454, 1384, 1160, 743, 700 cm-1. HRMS (EI) calcd for C16H16O4 272.1049, found 272.1052.(R)-2-苄基-4-氧代丁酸2-α-噻吩甲酯(2m):无色液体, 87%产率, 86% ee. HPLC: Chiralcel OJ-3 column. V(hexane):V(isopropanol)=93:7, flow rate=1.0 mL/min, UV-vis detection at λ=230 nm, tR=41.1 min (S), tR=43.7 min (R).
$[\alpha ]_{\text{D}}^{20}$ +1.9 (c=1.0, CHCl3). 1H NMR (CDCl3, 400 MHz) δ: 9.66 (s, 1H), 7.31~7.27 (m, 1H), 7.25~7.20 (m, 3H), 7.10~7.04 (m, 3H), 6.98~6.96 (m, 1H), 5.29 (d, J=12.4 Hz, 1H), 5.25 (d, J=12.8 Hz, 1H), 3.24~3.17 (m, 1H), 3.06 (dd, J=13.6, 6.0 Hz, 1H), 2.83 (ddd, J=18.4, 8.8, 0.8 Hz, 1H), 2.77 (dd, J=13.6, 8.4 Hz, 1H), 2.52 (ddd, J=18.4, 4.8, 0.8 Hz, 1H); 13C NMR (CDCl3, 100 MHz) δ: 199.7, 173.6, 137.8, 137.5, 128.9, 128.5, 128.3, 126.9, 126.74, 126.71, 60.8, 44.1, 40.7, 37.3; FTIR (neat) ν: 3469, 2970, 2928, 1725, 1496, 1454, 1383, 1159, 1030, 700 cm-1. HRMS (EI) calcd for C16H16O3S: 288.0820, found 288.0825.辅助材料(Supporting Information) 2a~2m的GC、HPLC和CD光谱, HRh(CO)2L表征.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
For reviews: (a) Claver, C.; van Leeuwen, P. W. N. M. In Rhodium Catalyzed Hydroformylation, Chapter 5, Eds.: van Leeuwen, P. W. N. M.; Claver, C., Kluwer Academic Publishers, Dordrecht, 2002.
(b) Agbossou, F.; Carpentier, J. F.; Mortreaux, A. Chem. Rev. 1995, 95, 2485.
(c) Breit, B.; Seiche, W. Synthesis 2001, 1.
(d) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675.
(e) Perandones, B. F.; Godard, C.; Claver, C. Asymmetric Hydroformylation, Springer-Verlag Berlin Heidelberg, 2013. -
[2]
Botteghi, C.; Paganelli, S.; Schionato, A.; Marchetti, M. Chirality 1991, 3, 355. doi: 10.1002/(ISSN)1520-636X
-
[3]
(a) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033.
(b) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc. 1997, 119, 4413. -
[4]
For selected examples, see: (a) Buisman, G. J. H.; Vos, E. J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. J. Chem. Soc. Dalton Trans. 1995, 409.
(b) Dieguez, M.; Pamies, O.; Ruiz, A.; Castillon, S.; Claver, C. Chem.-Eur. J. 2001, 7, 3086.
(c) Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-Gerosa, A.; Petersen, J. L.; Abboud, K. A. J. Org. Chem. 2004, 69, 4031.
(d) Breeden, S.; Cole-Hamilton, D. J.; Foster, D. F.; Schwarz, G. J.; Wills, M. Angew. Chem., Int. Ed. 2000, 39, 4106.
(e) Wassenaar, J.; de Bruin, B.; Reek, J. N. H. Organometallics., 2010, 29, 2767.
(f) Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198.
(g) Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. J. Am. Chem. Soc. 2005, 127, 5040.
(h) Zhao, B.; Peng, X.; Wang, Z.; Xia, C.; Ding, K. Chem.-Eur. J. 2008, 14, 7847.
(i) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027.
(j) Yu, H.; Eno, M. S.; Annis, A. H.; Morken, J. P. Org. Lett. 2015, 17, 3264.
(k) Schmitz, C.; Holthusen, K.; Leitner, W.; Francio, G. ACS Catal. 2016, 6, 1584.
(l) Allmendinger, S.; Kinuta, H.; Breit, B. Adv. Synth. Catal. 2015, 357, 41.
(m) Vidal-Ferran, A.; Mon, I.; Bauz, A.; Frontera, A.; Rovira, L. Chem.-Eur. J. 2015, 21, 11417.
(n) Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357.
(o) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem., Int. Ed. 2012, 51, 2477.
(p) Tan, R.; Zheng, X.; Qu, B.; Sader, C. A.; Fandrick, K. R.; Senanayake, C. H.; Zhang, X. Org. Lett., 2016, 18, 3346. -
[5]
(a) Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553.
(b) Mazuela, J.; Coll, M.; Pàmies, O.; Diéguez, M. J. Org. Chem. 2009, 74, 5440.
(c) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757.
(d) Bellini, R.; Chikkali, S. H.; Berthon-Gelloz, G.; Reek, J. N. H. Angew. Chem., Int. Ed. 2011, 50, 7342.
(e) Gadzikwa, T.; Bellini, R.; Dekker, H. L.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 2860.
(f) Chikkali, S. H.; Bellini, R.; de Bruin, B.; van der Vlugt, J. I.; Reek, J. N. H. J. Am. Chem. Soc. 2012, 134, 6607.
(g) Rovira, L.; Vaquero, M.; Vidal-Ferran, A. J. Org. Chem. 2015, 80, 10397.
(h) Abrams, M. L.; Foarta, F.; Landis C. R. J. Am. Chem. Soc. 2014, 136, 14583.
(i) Xu, K.; Zheng, X.; Wang, Z.; Zhang, X. Chem.-Eur. J. 2014, 20, 4357. -
[6]
(a) Thomas, S. P.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2009, 48, 1896.
(b) Wang, B.; Wong, O. A.; Zhao, M.-X.; Shi, Y. J. Org. Chem. 2008, 73, 9539 and the references therein.
(c) Corberán, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2011, 50, 7079. -
[7]
(a) Kollár, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1987, 330, 305.
(b) Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277.
(c) G. Parrinello, J. K. Stille, J. Am. Chem. Soc. 1987, 109, 7122. -
[8]
(a) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080.
(b) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429.
(c) Uhlemann, M.; Börner, A. ChemCatChem. 2012, 4, 753. -
[9]
(a) Deng, Y.; Wang, H.; Sun, Y.; Wang, X. ACS Catal., 2015, 5, 6828.
(b) Dutartre, M.; Bayardon, J.; Juge, S. Chem. Soc. Rev. 2016, 45, 5771 and the references cited therein. -
[10]
You, C.; Li, S.; Li, X.; Lan, J.; Yang, Y.; Chung, L. W.; Lv, H.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 4977. doi: 10.1021/jacs.8b00275
-
[11]
(a) Jackstell, R.; Klein, H.; Beller, M.; Wiese, K.-D.; Rottger, D. Eur. J. Org. Chem. 2001, 20, 3871.
(b) van der Slot, S. C.; Duran, J.; Luten, J.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Organometallics 2002, 21, 3873.
(c) Yan, Y.; Zhang, X.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 16058.
(d) Jia, X.; Wang, Z.; Xia, C.; Ding, K. Chem. Eur. J. 2012, 18, 15288. -
[12]
Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32. doi: 10.1021/ja043834g
-
[13]
Kim, D. H.; Chung, S. Tetrahedron:Asymmetry 1999, 10, 3769. doi: 10.1016/S0957-4166(99)00421-8
-
[1]
-
表 1 Rh(I)/(S)-L1催化α-苄基丙烯酸甲酯不对称氢甲酰化反应条件筛选a
Table 1. Optimization of reaction conditions for the Rh(I)/(S)-L1 catalyzed AHF of methyl 2-benzylacrylate
Entry Rh/L1 p(H2)/kPa p(CO)/kPa T/℃ Conv.b/% 2a Yieldb/% Yieldb/% eec/% 3a 4a 1 1:1 507 507 80 100 31 75 0 69 2 1:2 507 507 80 98 83 84 2 13 3 1:3 507 507 80 93 79 83 2 12 4 1:2 507 507 70 81 50 88 2 29 5 1:2 507 507 90 98 81 82 3 13 6 1:2 811 203 80 97 78 83 6 14 7 1:2 203 811 80 93 80 84 1 12 8d 1:2 507 507 90 98 81 83 4 13 9e 1:2 507 507 90 89 76 80 2 11 10f 1:2 507 507 80 86 70 79 2 14 aReaction conditions: 1a (0.25 mmol), Rh(CO)2(acac) (1.0 mol%), tridecane (1.0 mL), L1, 12 h. b GC yields and conversions are reported. The yields of the branched product 5a were found to be<1% in all cases. c The ee values were determined by chiral GC. d S/C=1000, 15 h. e S/C=10000, 24 h. f Toluene (1.0 mL) as the solvent. 表 2 1a不对称氢甲酰化反应中配体的筛选a
Table 2. Ligand screening for AHF of 1a
Entrya L Conv.b/% 2a Yieldb/% Yieldb/% eec/% 3a 4a 1 L1 98 83 84 2 13 2 L2 87 62 73 7 18 3 L3 82 60 68 6 16 4 L4 98 83 -13 6 8 5 L5 98 73 74 2 23 a Reaction conditions: 1a (0.25 mmol), CO (507 kPa), H2 (507 kPa), Rh(CO)2(acac) (1.0 mol%), L (2.0 mol%), tridecane (1.0 mL), 80 ℃, 12 h. b GC yield are reported. c The ee values were determined by chiral GC. 表 3 1, 1-双取代烯烃不对称氢甲酰化反应底物拓展a
Table 3. Substrate scope for AHF of 1, 1-disubstituted olefins
a Reaction conditions: 1a~1m (0.25 mmol), CO (507 kPa), H2 (507 kPa), Rh(CO)2(acac) (1.0 mol%), (S)-L1 (2.0 mol%), tridecane (1.0 mL), 80 ℃, 12 h. Yields are for the isolated products. The ee values were determined by chiral GC or chiral HPLC. The absolute configurations of 2c, [12] 2g, [8a] and 2j[13] were assigned to be R by comparison of their specific rotations with the literature values, while the configurations of the other products were deduced by comparison of the CD spectra of 2a~2m. 表 4 [HRh(CO)2(L1)]和[HRh(CO)2(L5)]的谱图数据
Table 4. Spectroscopic data of [HRh(CO)2(L1)] and [HRh(CO)2(L5)] complexes
Complex δ (1H) δ(31P) JHP/Hz JHRh/Hz JRhP/Hz vCO/cm-1 [HRh(CO)2(L1)] -10.4 (dt) 136.9 3.0 3.0 216 2074, 2021 [HRh(CO)2(L5)] -10.3 (m) 137.6 n.d. a n.d. a 216 2076, 2018 an.d=not determined. -

计量
- PDF下载量: 8
- 文章访问数: 1125
- HTML全文浏览量: 116