单壁碳纳米管上毒性苯气体净化的分子模拟

彭璇

引用本文: 彭璇. 单壁碳纳米管上毒性苯气体净化的分子模拟[J]. 物理化学学报, 2014, 30(11): 2000-2008. doi: 10.3866/PKU.WHXB201408291 shu
Citation:  PENG Xuan. Molecular Simulations of the Purification of Toxic Benzene Gas on Single-Walled Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2000-2008. doi: 10.3866/PKU.WHXB201408291 shu

单壁碳纳米管上毒性苯气体净化的分子模拟

  • 基金项目:

    化学工程联合国家重点实验室开放课题(SKL-Che-12C01)资助 (SKL-Che-12C01)

摘要:

采用巨正则系综蒙特卡罗(GCMC)方法研究了空气中微量苯组分在单臂碳纳米管(SWNTs)上的吸附净化. 模拟表明, 具有较大孔径的(20,20)纳米管比较适合吸附纯苯蒸汽, 而对于移除空气中的毒性苯物质, 苯的吸附选择性分别在(12,12)纳米管及4.0 MPa时和(18,18)纳米管及0.1 MPa时出现最小值和最大值. 为了解释这一异常行为, 我们进一步分析了N2-O2-C6H6混合物的局部密度分布、吸附分子构型和概率密度分布, 发现(18,18)纳米管内外完全被苯分子占据, 而对于(12,12)纳米管, 由于存在更强的吸附质-吸附剂相互作用, 空气分子更倾向于吸附在管与管之间的间隙. 此外, 吸附分子的空间有序参数表明大多数苯分子采取“平躺”在纳米管表面的定位, 而线性的N2和O2分子则多数平行于孔轴方向. 最后研究了温度和苯分子主体相浓度对分离效果的影响. 我们发现较大孔中的选择性随着温度的增加比小孔下降更加明显. 与此对比, 主体相苯浓度对小孔中的选择性起到更加重要的作用.

English

    1. [1]

      (1) Benzene Poisoning in Chemical Laboratories. J. Chem. Educ. 1929, 6, 513.

      (1) Benzene Poisoning in Chemical Laboratories. J. Chem. Educ. 1929, 6, 513.

    2. [2]

      (2) Yan, Y. P.; Chen, F. Z.; Shao, Y. X. Tech. Equip. Environmental Pollut. Control 2000, 1, 76. [颜幼平, 陈凡植, 邵英贤.环境污染治理技术与设备, 2000, 1, 76.](2) Yan, Y. P.; Chen, F. Z.; Shao, Y. X. Tech. Equip. Environmental Pollut. Control 2000, 1, 76. [颜幼平, 陈凡植, 邵英贤.环境污染治理技术与设备, 2000, 1, 76.]

    3. [3]

      (3) Peng, X.; Cao, D. AIChE J. 2013, 59, 2928. doi: 10.1002/aic.v59.8(3) Peng, X.; Cao, D. AIChE J. 2013, 59, 2928. doi: 10.1002/aic.v59.8

    4. [4]

      (4) Peng, X.; Cheng, X.; Cao, D. J. Mater. Chem. 2011, 21, 11259. doi: 10.1039/c1jm10264h(4) Peng, X.; Cheng, X.; Cao, D. J. Mater. Chem. 2011, 21, 11259. doi: 10.1039/c1jm10264h

    5. [5]

      (5) Do, D. D.; Do, H. D. Langmuir 2006, 22, 1121. doi: 10.1021/la052545i(5) Do, D. D.; Do, H. D. Langmuir 2006, 22, 1121. doi: 10.1021/la052545i

    6. [6]

      (6) Coasne, B.; Fourkas, J. T.; Normale, E. J. Phys. Chem. C 2011, 115, 15471. doi: 10.1021/jp203831q(6) Coasne, B.; Fourkas, J. T.; Normale, E. J. Phys. Chem. C 2011, 115, 15471. doi: 10.1021/jp203831q

    7. [7]

      (7) Jousse, F.; Auerbach, S. M.; Vercauteren, D. P. J. Phys. Chem. B 2000, 104, 2360. doi: 10.1021/jp9935642(7) Jousse, F.; Auerbach, S. M.; Vercauteren, D. P. J. Phys. Chem. B 2000, 104, 2360. doi: 10.1021/jp9935642

    8. [8]

      (8) Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Angew. Chem. Int. Edit. 2007, 46, 463.(8) Amirjalayer, S.; Tafipolsky, M.; Schmid, R. Angew. Chem. Int. Edit. 2007, 46, 463.

    9. [9]

      (9) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0(9) Iijima, S. Nature 1991, 354, 56. doi: 10.1038/354056a0

    10. [10]

      (10) Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. doi: 10.1016/S0009-2614(03)01124-2(10) Cinke, M.; Li, J.; Bauschlicher, C.W.; Ricca, A.; Meyyappan, M. Chem. Phys. Lett. 2003, 376, 761. doi: 10.1016/S0009-2614(03)01124-2

    11. [11]

      (11) Wang,W.; Peng, X.; Cao, D. Environ. Sci. Technol. 2011, 45, 4832. doi: 10.1021/es1043672(11) Wang,W.; Peng, X.; Cao, D. Environ. Sci. Technol. 2011, 45, 4832. doi: 10.1021/es1043672

    12. [12]

      (12) Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. J. Phys. Chem. C 2007, 111, 11912. doi: 10.1021/jp067226u(12) Huang, L.; Zhang, L.; Shao, Q.; Lu, L.; Lu, X.; Jiang, S.; Shen, W. J. Phys. Chem. C 2007, 111, 11912. doi: 10.1021/jp067226u

    13. [13]

      (13) Bonnaud, P.; Nieto-Draghi, C.; Ungerer, P. J. Phys. Chem. B 2007, 111, 3730. doi: 10.1021/jp067695w(13) Bonnaud, P.; Nieto-Draghi, C.; Ungerer, P. J. Phys. Chem. B 2007, 111, 3730. doi: 10.1021/jp067695w

    14. [14]

      (14) Perng, B.; Sasaki, S.; Ladanyi, B. M.; Everitt, K. F.; Skinner, J. L. Chem. Phys. Lett. 2001, 348, 491. doi: 10.1016/S0009-2614(01)01152-6(14) Perng, B.; Sasaki, S.; Ladanyi, B. M.; Everitt, K. F.; Skinner, J. L. Chem. Phys. Lett. 2001, 348, 491. doi: 10.1016/S0009-2614(01)01152-6

    15. [15]

      (15) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.(15) Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.

    16. [16]

      (16) Frenkel, D.; Berend, S. Understanding Molecular Simulation; Academic Press: London, 2002.(16) Frenkel, D.; Berend, S. Understanding Molecular Simulation; Academic Press: London, 2002.

    17. [17]

      (17) Kowalczyk, P.; Holyst, R. Environ. Sci. Technol. 2008, 42, 2931. doi: 10.1021/es071306+(17) Kowalczyk, P.; Holyst, R. Environ. Sci. Technol. 2008, 42, 2931. doi: 10.1021/es071306+

    18. [18]

      (18) Wolf, D.; Keblinski, P.; Phillpot, S. R.; Eggebrecht, J. J. Chem. Phys. 1999, 110, 8254. doi: 10.1063/1.478738(18) Wolf, D.; Keblinski, P.; Phillpot, S. R.; Eggebrecht, J. J. Chem. Phys. 1999, 110, 8254. doi: 10.1063/1.478738

    19. [19]

      (19) Peng, X.; Cao, D.;Wang,W. Ind. Eng. Chem. Res. 2010, 49, 8787. doi: 10.1021/ie1010433(19) Peng, X.; Cao, D.;Wang,W. Ind. Eng. Chem. Res. 2010, 49, 8787. doi: 10.1021/ie1010433

    20. [20]

      (20) Peng, X.;Wang,W.; Xue, R.; Shen, Z. AIChE J. 2006, 52, 994.(20) Peng, X.;Wang,W.; Xue, R.; Shen, Z. AIChE J. 2006, 52, 994.

    21. [21]

      (21) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Phys. Chem. Chem. Phys. 2011, 13, 3748. doi: 10.1039/c0cp02205e(21) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Phys. Chem. Chem. Phys. 2011, 13, 3748. doi: 10.1039/c0cp02205e

    22. [22]

      (22) Nguyen, D.; Do, D. J. Phys. Chem. B 2000, 104, 11435. doi: 10.1021/jp0007282(22) Nguyen, D.; Do, D. J. Phys. Chem. B 2000, 104, 11435. doi: 10.1021/jp0007282

    23. [23]

      (23) Yang, Q.; Ma, L.; Zhong, C.; An, X.; Liu, D. J. Phys. Chem. C 2011, 115, 2790. doi: 10.1021/jp1101835(23) Yang, Q.; Ma, L.; Zhong, C.; An, X.; Liu, D. J. Phys. Chem. C 2011, 115, 2790. doi: 10.1021/jp1101835

    24. [24]

      (24) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Adsorption 2007, 13, 485. doi: 10.1007/s10450-007-9051-3(24) Coasne, B.; Alba-Simionesco, C.; Audonnet, F.; Dosseh, G.; Gubbins, K. Adsorption 2007, 13, 485. doi: 10.1007/s10450-007-9051-3

    25. [25]

      (25) Song, L.; Sun, Z.; Ban, H.; Dai, M.; Rees, L. Adsorption 2005, 11, 325.(25) Song, L.; Sun, Z.; Ban, H.; Dai, M.; Rees, L. Adsorption 2005, 11, 325.

    26. [26]

      (26) Zeng, Y.; Ju, S.; Xing,W.; Chen, C. Ind. Eng. Chem. Res. 2007, 46, 242. doi: 10.1021/ie060118+(26) Zeng, Y.; Ju, S.; Xing,W.; Chen, C. Ind. Eng. Chem. Res. 2007, 46, 242. doi: 10.1021/ie060118+

    27. [27]

      (27) Bhide, S.; Yashonath. S. J. Phys. Chem. B 2000, 104, 11977. doi: 10.1021/jp002626h

      (27) Bhide, S.; Yashonath. S. J. Phys. Chem. B 2000, 104, 11977. doi: 10.1021/jp002626h

  • 加载中
计量
  • PDF下载量:  541
  • 文章访问数:  1006
  • HTML全文浏览量:  36
文章相关
  • 发布日期:  2014-10-30
  • 收稿日期:  2014-06-04
  • 网络出版日期:  2014-08-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章