Structure and magnetism of cyanide-bridged [FeCo]-based chain-like complexes

Yan-Rui LEI Hai-Lang ZHU Jie HUANG Ren-He ZHOU Tao LIU

Citation:  Yan-Rui LEI, Hai-Lang ZHU, Jie HUANG, Ren-He ZHOU, Tao LIU. Structure and magnetism of cyanide-bridged [FeCo]-based chain-like complexes[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(10): 1969-1979. doi: 10.11862/CJIC.2023.147 shu

氰基桥联铁钴链状配合物的结构与磁性

    通讯作者: 刘涛, liutao@dlut.edu.cn
  • 基金项目:

    国家自然科学基金 22222103

    国家自然科学基金 22173015

    国家自然科学基金 22025101

    国家自然科学基金 91961114

    国家自然科学基金 21871039

    中央高校基本科研业务费专项资金 DUT22LAB606

摘要: 利用三氰基构筑单元(Bu4N)[Fe (PzTp)(CN)3](PzTp=tetrakis (pyrazolyl) borate)和(E)-1-苯乙烯基-1H-咪唑(Bzi),合成了2例氰基桥联的铁钴链状配位聚合物。单晶X射线衍射表明,配合物[Fe (PzTp)(CN)3]2[Co (Bzi)4]2(ClO4)2·H2O (1)为方波形单链结构,而配合物[Fe (PzTp)(CN)3]2[Co (Bzi)2]·CH3OH (2)则形成含有甲醇溶剂分子的双“之”字形双链结构。磁学研究显示,配合物1在360 K左右显示出热诱导的自旋转变,而配合物2在大约200 K显示出溶剂诱导的两步自旋转变。变温红外光谱证实了热诱导的金属间电荷转移行为。此外,光磁实验显示,当用808和532 nm的光交替照射时,1显示出可逆的光诱导电荷转移行为,而2的电荷转移行为可由808 nm光照射诱导。磁结构关系分析表明,配合物12中钴位点不同的氢键相互作用和局部配位环境是导致其不同电荷转移和光反应特性的主要因素。

English

  • Molecular magnetic bistability [1-2] refers to the phenomenon where a molecule can exist in two distinct spin states that can be interconverted by external stimuli such as light, heat, pressure, and magnetic or electric fields [3-9]. This spin transition is generally mediated by metal-to-metal charge transfer (MMCT) between different metal sites or spin crossover (SCO) on a single metal site, which involves the redistribution of $d$-electrons in response to appropriate crystal field environments [4, 9]. As the two spin states can represent the binary states of 0 and 1, the magnetic bistable molecular materials offer significant potential for the realization of high-density information devices at the molecular level [10]. In addition, they also hold promise in molecular switching devices and sensors, which could lead to the development of spintronic devices [11] and quantum computing, offering improved performance and a wider range of functionalities [12].

    As one of the well-known magnetic bistable systems, a considerable number of charge transfer coupled spin transition (CTCST) compounds have been documented. Among them, the building block strategy of cyanide-bridged metals has been demonstrated to be effective in fabricating CTCST compounds [4, 13-16]. One of the most typical systems of such compounds is the Prussian blue analogue (PBA)[17], which has a general formula of $\mathrm{A}_{n} \mathrm{M}_{p}^{1}\left[\mathrm{M}^{2}(\mathrm{CN})_{6}\right]_{q} \cdot x \mathrm{H}_{2} \mathrm{O}$ (A is a monovalent cation; $\mathrm{M}^{1}$ and $\mathrm{M}^{2}$ are redox-active metal ions with variable valence states). In 1996, Hashimoto and Sato et al. [1] initially reported the phenomenon of light - induced charge transfer in Co-Fe PBA systems, which stimulated extensive research on PBA analogues. In the early stages, the research focused on $3 \mathrm{D}$ grid structures, exploring the charge transfer behavior between metals by regulating vacancies and the number of alkali ions in the structures [18-20]. Subsequently, researchers became interested in low-dimensional cyanide-bridged compounds [21-23] since these systems can precisely regulate the coordination environment of metal ions via ligands, thereby promoting complete charge transfer behaviors and increasing solubility, thus facilitating investigations of their structures and physicochemical properties. Notably, the tricyanoferrate (Ⅲ) building blocks can coordinate with metal ions to form lowdimensional compounds due to their unique conical structure. When appropriate ancillary ligands were applied, the redox potential of metal ions can be tuned to allow the occurrence of intermetallic charge transfer [18, 24-25]. The reported low - dimensional MMCT compounds using tricyanoferrate(Ⅲ) building blocks [Fe(Tp) $\left.(\mathrm{CN})_{3}\right]^{-}(\mathrm{Tp}=$ tris(pyrazolyl)borate) have generated significant interest for MMCT-switched magnetism and other properties. For example, the 1D Fe-Co chain assembled by $\left[\mathrm{Fe}(\mathrm{Tp})(\mathrm{CN})_{3}\right]^{-}$and a chiral ligand Pabn[26] showed the light-induced MMCT and conductivity conversion. The combination of asymmetric ancillary ligand and $\left[\mathrm{Fe}(\mathrm{Tp})(\mathrm{CN})_{3}\right]^{-}$resulted in a light-induced single- chain magnet with large coercivity values [27-29]. One can note that these functional cyanide-bridged MMCT systems usually contain solvent molecules and counterions. And the guest molecules and anions can influence charge transfer behavior [30-34] and the corresponding properties above-mentioned. For example, recently reported trinuclear $\left\{\mathrm{Fe}^{Ⅲ}{ }_{2} \mathrm{Fe}^{\mathrm{Ⅱ}}\right\}$ complexes [35] exhibit solvent - induced spin transition behavior and wide thermal hysteresis. The tetranuclear $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{2} \mathrm{Co}^{\mathrm{Ⅱ}}{ }_{2}\right\}$ complexes [14] composed of $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}(\mathrm{PzTp}=$ tetrakis(pyrazolyl)borate) revealed how different anions play a significant role in MMCT behavior by controlling intermolecular interactions. Therefore, understanding the roles of solvent and counterion effects on the MMCT behavior is crucial in manipulating the charge transfer more accurately and switching the physical properties more effectively. In light of this concern, we designed and synthesized two complexes (Scheme 1) composed of the asymmetric ligand Bzi and the tricyanoferrate (Ⅲ) building block $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}$, namely $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]_{2}\left[\mathrm{Co}(\mathrm{Bzi})_{4}\right]_{2}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(\bf{1})$ and $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]_{2}\left[\mathrm{Co}(\mathrm{Bzi})_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{OH}(\bf{2})$. The effects of counterions and crystallizing solvents on the structures and properties of the complexes were studied.

    Scheme 1

    Scheme 1.  Self-assembly processes of complexes $\bf{1}$ and $\bf{2}$

    The black wavy line represents $\mathrm{C} \equiv \mathrm{N}$ and the blue arc represents PzTp for clarity.

    All chemical reagents were obtained from commercial suppliers and used without further purification. Tricyanoferrate (Ⅲ) building blocks $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Fe}\left(\mathrm{PzTp}^{\mathrm{P}}\right)\right.$ $\left.(\mathrm{CN})_{3}\right], \quad\left(\mathrm{Bu}_{4} \mathrm{~N}=\right.$ tetrabutylammonium $)$ and asymmetric ligand Bzi were synthesized according to the literature procedures [36-37]. The physical measurements and detailed crystallographic data can be found in the Supporting information (Table S1-S6, Fig.S1-S17).

    Single crystals of $\bf{1}$ were synthesized by the liquid diffusion method. An aqueous solution containing $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}(0.005 \mathrm{mmol}, 1.273 \mathrm{mg})$ was placed at the bottom of a clean test tube. Then a mixed solvent of methanol and water $(1: 1, V / V, 2.5 \mathrm{~mL})$ was layered as the middle buffer. Finally, the methanol solution containing tricyanoferrate (Ⅲ) building blocks $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)$ $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right](0.005 \mathrm{mmol}, 3.275 \mathrm{mg})$ and Bzi $(0.02$ mmol, $3.4 \mathrm{mg}$) was placed on the top of the tube. The top of the tube was sealed and left for two months to obtain dark green block crystals. The yield based on $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ was about $61 \%$. Elemental analysis calculated for $\mathrm{C}_{118} \mathrm{H}_{106} \mathrm{~B}_{2} \mathrm{Cl}_{2} \mathrm{Co}_{2} \mathrm{Fe}_{2} \mathrm{~N}_{38} \mathrm{O}_{9}(%)$ : C $56.19, \mathrm{H}$ 4.23, N 21.10; Found(%): C 56.05, H 4.26, N 20.17.

    The synthesis of $\bf{2}$ was similar to that of $\bf{1}$ by use of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ instead of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$. Crimson long strips of crystals were obtained after about six weeks. The yield based on $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ was about $51 \%$. Elemental analysis calculated for $\mathrm{C}_{53} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{CoFe}_{2}$ $\mathrm{N}_{26} \mathrm{O}(%): \mathrm{C}$ 50.63, H 3.85, N 28.96; Found(%): C 51.12, H 3.41, N 28.74.

    2.1.1   Crystal structure of 1

    The coordination polymer $\bf{1}$ was synthesized by the reaction of $\left(\mathrm{Bu}_{4} \mathrm{~N}\right)\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]$, Bzi, and $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$ in a methanol-water mixture. The single crystals were obtained after staying solution in the dark for a few weeks. Due to the instability, attempts to collect X -ray diffraction data at higher temperatures were not performed. The dark green $\bf{1}$ crystallizes in a triclinic space group $P \overline{1}$ at $120 \mathrm{~K}$. The phase purity was confirmed by powder $\mathrm{X}$ -ray diffraction (PXRD) (Fig. S4) measurements. As shown in Fig. 1, the cobalt center is located in a distorted octahedral environment. It can be verified by continuous symmetry measurements using the SHAPE program, which is similar to previously reported results. Cobalt ions are connected by tricyanoferrate building blocks, forming square wave type chains along the $c$-axis. As shown in Fig. S1c, the stacking between chains is tight, but there are no obvious intra-chain or inter-chain $\pi \cdots \pi$ interactions. It should be noted that two free $\mathrm{ClO}_{4}^{-}$ ions are located in the lattice void, which plays a role in balancing the positive charges of the chain. In addition, hydrogen -bonding interactions between the solvent molecule and the free terminal cyanide groups are also observed, which may play a role in mediating the MMCT behavior. The asymmetric unit contains three crystallographically independent Co (Co1, Co2, and Co3) ions and two Fe (Fe1 and Fe2) ions (Fig. 1a). Complex 1 comprises cyanide-bridged alternating Fe-Co square-wave type chains along the $c$-axis (Fig. S1b). Within the chain, two of the three cyanide groups in the $\left[\mathrm{Fe}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}$unit bridge two Co ions to form an alternating zigzag chain $[\mathrm{Co} 1-\mathrm{NC}-\mathrm{Fe} 1-\mathrm{CN}-$ $\mathrm{Co} 2-\mathrm{NC}-\mathrm{Fe} 2-\mathrm{CN}-\mathrm{Co} 3$]. In $\bf{1}$, the Co ions adopt a distorted octahedral coordination geometry with four nitrogen atoms from four Bzi and two nitrogen atoms from tricyanoferrate. At $120 \mathrm{~K}$, the average Co1-N, Co2$\mathrm{N}$, and Co3-N bond lengths are $0.1928, 0.192$ 2, and $0.1923 \mathrm{~nm}$, respectively. All of them are typical of low- spin (LS) Co (Ⅲ) ions. The iron ion also locates in a distorted octahedral coordination environment that is composed of three nitrogen atoms from the PzTp ligand and three cyanide carbon atoms. Fe1- $\mathrm{C}$ and Fe1-N bond lengths are $0.1876(4)$ and $0.2009(3) \mathrm{nm}$, respectively, and the $\mathrm{Fe} 2-\mathrm{C}$ and $\mathrm{Fe} 2-\mathrm{N}$ bond lengths are $0.1861(4)$ and $0.2011(3) \mathrm{nm}$, respectively, which are in the range of character of the LS Fe ${ }^{\text {Ⅱ }}$ species.

    Figure 1

    Figure 1.  (a) Asymmetric unit of complex 1; (b) Square-wave type chain structure of $\bf{1}$

    Some $\mathrm{H}$ atoms of $\bf{1}$ and a part of the building blocks are omitted for clarity; Atomic scheme: Co, sky blue; Fe, light red; Cl, light green; N, blue; O, red; C, gray; H pink; B, yellow.

    2.1.2   Crystal structure of 2

    To investigate how solvent molecules and anions affect the crystal structure and magnetic properties. Complex 2 was synthesized in different solvents by changing the metal salts of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot x \mathrm{H}_{2} \mathrm{O}$. Single crystal X-ray diffraction data for $\bf{2}$ was collected at 120 K. The phase purity was confirmed by PXRD (Fig.S5) measurement. 2 crystallizes in the triclinic space group $P \overline{1}$. The cobalt center is located in an octahedral environment and is interconnected by tricyanoferrate to form a double zigzag chain skeleton [Co1-NC-Fe1$\mathrm{CN}-\mathrm{Co} 2-\mathrm{NC}-\mathrm{Fe} 2]$ along the $a$-axis (Fig. 2b). 2 shows a double zigzag chain structure. From the $a$-axis direction, all the cobalt ions fall in a straight line, and the iron ions in the building block form two planes located on both sides of the cobalt sites (Fig. 2c), which is different from the structure of $\bf{1}$. In addition, lattice voids between the adjacent chains adopt a small amount of methanol solvent molecules. Thermogravimetric (TG) analysis shows that there exists one methanol molecule in the symmetric unit (Fig.S3). As shown in Fig. 2a, the asymmetric unit contains two crystallographically independent $\mathrm{Fe}(\mathrm{Fe} 1$ and $\mathrm{Fe} 2)$ ions and two crystallographically independent Co (Co1 and Co2) ions. Each cobalt ion center is linked to four tricyanoferrate building blocks at the equatorial position, and the rest coordinating sites are coordinated with two Bzi ligands to form octahedral coordination. In contrast, each cobalt center in the asymmetric unit of complex 1 is linked to four Bzi ligands at the equatorial position and then connected to two building blocks. In complex 2, the average $\mathrm{Co} 1-\mathrm{N}$ and $\mathrm{Co} 2-\mathrm{N}$ bond lengths are 0.1907 and $0.1906 \mathrm{~nm}$ at $120 \mathrm{~K}$, respectively. They are both typical for the LS Co(Ⅲ) ions. The Fe1-C and $\mathrm{Fe} 1-\mathrm{N}$ bond lengths are $0.1897(4)$ and $0.198 7(3)$ $\mathrm{nm}$, respectively, and the $\mathrm{Fe} 2-\mathrm{C}$ and $\mathrm{Fe} 2-\mathrm{N}$ bond lengths are $0.191 \mathrm{1}(3)$ and $0.197 \mathrm{7}(3) \mathrm{nm}$ at $120 \mathrm{~K}$, respectively, which are in the typical range for the LS $\mathrm{Fe}^{\text {Ⅱ }}$ species. Single-crystal X-ray diffraction data for $\bf{2}$ at 190 and $225 \mathrm{~K}$ were also collected to investigate the effect of crystalline solvents on the structure and magnetic properties. The average $\mathrm{Co} 1-\mathrm{N}$ and $\mathrm{Co} 2-\mathrm{N}$ bond lengths are 0.2117 and $0.2112 \mathrm{~nm}$ at $190 \mathrm{~K}$, 0.2120 and $0.2116 \mathrm{~nm}$ at $225 \mathrm{~K}$, respectively. Detailed crystallographic data are listed in Table S1.

    Figure 2

    Figure 2.  (a) Asymmetric unit of complex 2; (b) Double zigzag chain structure of 2; (c) Packing diagram viewed along the $a$-axis of 2; (d) Packing diagram viewed along the $c$-axis of $\bf{2}$

    All $\mathrm{H}$ atoms and a part of building blocks are omitted for clarity.

    Temperature-variable magnetic susceptibility measurements were performed to probe the charge transfer behaviors in these complexes. As shown in Fig. 3, for complex 1, the $\chi_{\mathrm{M}} T$ value remained around $0.10 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ from 2 to $350 \mathrm{~K}$, corresponding to diamagnetic $\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}$ linkages. When further heated, the $\chi_{\mathrm{M}} T$ value rapidly increased to 3.34 $\mathrm{cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $368 \mathrm{~K}$ and reached $6.29 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $371 \mathrm{~K}\left(T_{1 / 2 \uparrow}=368 \mathrm{~K}\right)$. The $\chi_{\mathrm{M}} T$ value at $400 \mathrm{~K}$ was $6.27 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$, which was close to the value of 6.67 $\mathrm{cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ expected for magnetically isolated two $\mathrm{Fe}^{\text {Ⅲ }}{ }_{\text {LS }}(S=1 / 2)$ and two Co ${ }^\text {Ⅱ }_{\text {HS }}(S=3 / 2)$ ions. It suggests that about $94 \%$ of $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}{ }^\mathrm{Ⅲ}_{\mathrm{LS}}\right\}$ units underwent intermetallic charge transfer at this stage. Upon decreasing temperature, the $\chi_{\mathrm{M}} T$ value decreased rapidly to $3.47 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $357 \mathrm{~K}$. Then it reached a plateau value of about $0.11 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ with an 11 $\mathrm{K}$-wide thermal hysteresis loop upon cooling. In addition, the isothermal field-dependent magnetization data for 1 was collected in a direct current (dc) field up to 5 $\mathrm{T}$ at $2 \mathrm{~K}$ (Fig. S9). The isothermal magnetization curve at $2 \mathrm{~K}$ increased slowly to $0.032 N \beta$ at $50 \mathrm{kOe}$, confirming the diamagnetic character of the $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\right.$ $\left.\mathrm{Co}^{\text {Ⅲ }}{ }_{\text {LS }}\right\}$ unit. Differential scanning calorimetry (DSC) was performed under an $\mathrm{N}_{2}$ atmosphere to verify the driving force of MMCT. As shown in Fig. S6, the DSC curves exhibited an endothermic peak in the heating mode, with the onset and maximum temperatures of $T_{\text {on }}=362.5 \mathrm{~K}$ and $T_{\max }=368.0 \mathrm{~K}$, respectively. The $T_{\max }$ was consistent with $T_{1 / 2 \uparrow}=368 \mathrm{~K}$, accompanied by enthalpy and entropy changes of $\Delta H_{\mathrm{m}}=90.33(3) \mathrm{kJ} \cdot$ $\mathrm{mol}^{-1}$ and $\Delta S_{\mathrm{m}}=250.91(6) \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$, respectively. In addition, an exothermic peak was recorded in the cooling mode, with $T_{\text {on }}=364.9 \mathrm{~K}, T_{\max }=360 \mathrm{~K}, \Delta H_{\mathrm{m}}=91.23$ (3) $\mathrm{kJ} \cdot \mathrm{mol}^{-1}$ and $\Delta S_{\mathrm{m}}=253.42(6) \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}^{-1}$. Peak temperature was also close to $T_{1 / 2} \downarrow=357 \mathrm{~K}$. The distinct endothermic/exothermic peaks and the $8 \mathrm{~K}$-width thermal hysteresis indicated a first-order phase transition and significant entropy changes suggested that MMCT is an entropy-driven process.

    Figure 3

    Figure 3.  Temperature dependence observed for the $\chi_{\mathrm{M}} T$ values of $\bf{1}$ (a) and $\bf{2}$ (b) under a de field of 5000 Oe (1) and 1000 Oe (2)

    Complex 2 exhibited an interesting two-step spin transition. The purple curve in Fig. 3b showed that the $\chi_{\mathrm{M}} T$ value below $100 \mathrm{~K}$ was about $1.39 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$, while the theoretical $\chi_{\mathrm{M}} T$ value of $\bf{2}$ in a low spin state was about $0.58 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$, suggesting the existence of high-spin (HS) $\mathrm{Co}(I I)$ ions. Upon heating, the $\chi_{\mathrm{M}} T$ value increased to $1.91 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $180 \mathrm{~K}$. The theoretical $\chi_{\mathrm{M}} T$ value of the $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}-\mathrm{NC}-\right.$ $\mathrm{Fe}^\text {Ⅲ }{ }_{\text {LS}}$ $\}$ state of complex 2 was $4.32 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$. Based on the changes in $\chi_{\mathrm{M}} T$ value, about $44 \%\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\right.$ $\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{NC}-\mathrm{Fe}^\mathrm{Ⅲ}{ }_\text {LS}$ $\}$ units underwent the intermetallic charge transfer at this stage. When the temperature continued to increase to $210 \mathrm{~K}$, the $\chi_{\mathrm{M}} T$ value rapidly reached $4.12 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$, which was close to the theoretical value of $4.32 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$, indicating that about $95.4 \%\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{NC}-\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ units underwent the intermetallic charge transfer and transformed into the $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}-\mathrm{NC}-\mathrm{Fe}^\mathrm{Ⅲ}{ }_{\mathrm{LS}}\right\}$ state. During the cooling process, the $\chi_{\mathrm{M}} T$ value decreased rapidly to $2.06 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $190 \mathrm{~K}$. A thermal hysteresis of $12 \mathrm{~K}$ was produced. Subsequent$\mathrm{ly}$, the value of $\chi_{\mathrm{M}} T$ decreased to $1.58 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $150 \mathrm{~K}$. Further decreasing the temperature resulted in the decrease of $\chi_{\mathrm{M}} T$ value to $1.3 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ and produced a thermal hysteresis of about 30 K. 2 exhibited a rare two-step charge transfer behavior. In the first step, the transition temperatures were $T_{1 / 2 \uparrow}=183 \mathrm{~K}, T_{1 / 2 \downarrow}=$ $154 \mathrm{~K}$; in the second step, the transition temperatures were $T_{1 / 2 \uparrow}=204 \mathrm{~K}, T_{1 / 2 \downarrow}=192 \mathrm{~K}$. Remarkably, we observed the first step of spin transition behavior disappeared when 2 continued to be heated to $300 \mathrm{~K}$ (green curve in Fig. 3b), possibly due to the loss of some solvents during the heating process. In addition, the TG curve of 2 (Fig. S3) showed a loss of solvents at $305 \mathrm{~K}$, with a mass loss of $3.87 \%$. Therefore, we collected the temperature-variable magnetic susceptibility for 2-desolvated. As shown in the blue curve in Fig. 3b, the $\chi_{\mathrm{M}} T$ values of $3.42 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ remained nearly constant from 30 to $150 \mathrm{~K}$, then slowly increased to 4.12 $\mathrm{cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $198 \mathrm{~K}$ and reached a plateau value of $4.25 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $203 \mathrm{~K}$. Corresponding to high spin $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}-\mathrm{NC}-\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ states. It indicates that the solvent molecules can greatly influence the charge transfer behavior of $\bf{2}$. It is noted that $\bf{2}$ exhibited higher $\chi_{\mathrm{M}} T$ values below $10 \mathrm{~K}$, which can be attributed to the intramolecular ferromagnetic coupling between the remaining $\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}$ and $\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\text {HS }}$ ions.

    Variable - temperature infrared spectra were collected to probe the charge transfer behavior. For complex 1, two $\nu_{\mathrm{CN}}$ absorption bands at around 2117 and $2154 \mathrm{~cm}^{-1}$ were observed at $400 \mathrm{~K}$ (Fig. 4a). The band at $2117 \mathrm{~cm}^{-1}$ can be ascribed to $\nu_{\mathrm{CN}}$ modes for the nonbridging cyanide groups of $\left[\mathrm{Fe}^{\mathrm{Ⅲ}}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}$, and the other is attributed to $\nu_{\mathrm{CN}}$ modes for the bridging cyanide groups of $\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\text {HS }}$ linkages. As the temperature decreased, two new bands appeared, corresponding to the non-bridging $\nu_{\mathrm{CN}}$ modes of $\left[\mathrm{Fe}^{\mathrm{Ⅱ}}(\mathrm{PzTp})\right.$ $\left.(\mathrm{CN})_{3}\right]^{2-}\left(2064 \mathrm{~cm}^{-1}\right)$ and the bridging $\nu_{\mathrm{CN}}$ modes of $\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\left(2 \quad 102 \mathrm{~cm}^{-1}\right)$ linkages. Mean- while, as the temperature was lowered, intensities of the non-bridging $\nu_{\mathrm{CN}}$ modes of $\left[\mathrm{Fe}^{\mathrm{Ⅲ}}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}$and the bridging $\nu_{\mathrm{CN}}$ modes of the $\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}$ linkages were reduced to disappear. These results established the MMCT behavior in 1. For complex 2, two $\nu_{\mathrm{CN}}$ absorption bands at around 2122 and 2160 $\mathrm{cm}^{-1}$ were also observed at $250 \mathrm{~K}$ (Fig. 4b). It can be ascribed to $\nu_{\mathrm{CN}}$ modes for the non - bridging cyanide groups of $\left[\mathrm{Fe}^{\mathbb{Ⅲ}}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{-}$and the bridging cyanide groups of $\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}$ linkages, respectively. At the cooling process, three $\nu_{\mathrm{CN}}$ absorption bands at around 2 064, 2 101, and $2199 \mathrm{~cm}^{-1}$ were enhanced gradually, which can be ascribed to $\nu_{\mathrm{CN}}$ modes for the non-bridging cyanide groups of $\left[\mathrm{Fe}^{\mathrm{Ⅱ}}(\mathrm{PzTp})(\mathrm{CN})_{3}\right]^{2-}$ and the bridging cyanide groups of $\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}$ and $\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{C} \equiv \mathrm{N}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}$ linkages. These also probed the MMCT behavior in 2.

    Figure 4

    Figure 4.  Variable-temperature solid-state infrared spectroscopy of $\bf{1}$ (a) and $\bf{2}$ (b) at the near transition temperature

    Light-monitored magnetic susceptibility measurements were conducted to further explore the possible photo-responsive MMCT in complexes $\bf{1}$ and $\bf{2}$. Between 300 and $400 \mathrm{~K}$, solid UV-Vis-NIR absorption spectra were recorded for $\bf{1}$. Spectral changes were observed at the bands approximately 500 and $800 \mathrm{~nm}$ (Fig. S12), which correspond to the $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\right.$ $\left.\mathrm{Co}{ }^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ and $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}\right\}$ states, respectively. Based on the UV - Vis - NIR absorption spectra results, we chose 532 and $808 \mathrm{~nm}$ diode lasers to examine the photo-responsive characteristics of $\bf{1}$. Meanwhile, 808 $\mathrm{nm}$ was selected based on the UV-Vis-NIR absorption spectra results of 2 (Fig. S13). As shown in Fig. 5b, when 1 was irradiated with an $808 \mathrm{~nm}$ laser, the $\chi_{\mathrm{M}} T$ value increased rapidly and reached a saturation value of $7.2 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$. The increase of magnetization demonstrated the occurrence of light-induced MMCT, corresponding to the transformation from low-spin $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ to the metastable high-spin $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}\right\}$ state. When the laser wavelength was changed to $532 \mathrm{~nm}$, the $\chi_{\mathrm{M}} T$ value of $\bf{1}$ experienced a gradual decrease from 7.2 to $1.3 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ after $175 \mathrm{~min}$. The incomplete phase transition may be attributed to the partial overlap between the green light and the $\mathrm{Fe}^{\mathrm{Ⅱ}} \rightarrow \mathrm{Co}^{\text {Ⅲ }}$ IVCT (intervalence charge transfer) band. It is noted that the interconversion between $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}\right\}$ and $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ spin states can be well repeated by alternating light irradiations of 808 and $532 \mathrm{~nm}$, confirming the reversible light-induced MMCT. When 2 was irradiated with an $808 \mathrm{~nm}$ laser (Fig. S8), the $\chi_{\mathrm{M}} T$ value increased slowly to $4.35 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ after $150 \mathrm{~min}$. It also showed the light-induced MMCT behavior in 2. But it cannot be excited back to the initial state by other laser wavelengths for $\bf{2}$, which is consistent with its change in the UV-visible absorption spectrum.

    Figure 5

    Figure 5.  (a) Plots of $\chi_{\mathrm{M}} T$ vs temperature of $\bf{1}$ and $\bf{2}$ irradiated at 808 and $532 \mathrm{~nm}$ at 5000 Oe (1) and 1000 Oe (2); (b) Plots of $\chi_{\mathrm{M}} T$ vs time during cycles of successive irradiation at $808 \mathrm{~nm}$ (orange) and $532 \mathrm{~nm}$ (green) at $10 \mathrm{~K}$ of $\bf{1}$

    After the irradiation with $808 \mathrm{~nm}$ laser at $10 \mathrm{~K}$ for $2 \mathrm{~h}$, complexes $\bf{1}$ and $\bf{2}$ were cooled down to the base temperature of $2 \mathrm{~K}$. The $\chi_{\mathrm{M}} T$ values rapidly increased to $28.1 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ for $\bf{1}$ (orange curve in Fig. 5a). After being irradiated by the $532 \mathrm{~nm}$ laser, only the $\chi_{\mathrm{M}} T$ values of 1 increased to $1.8 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $2 \mathrm{~K}$. During the heating process, the $\chi_{\mathrm{M}} T$ values rapidly dropped to $5.8 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $17 \mathrm{~K}$ for $\bf{1}$, and finally returned to the thermodynamically stable $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\right.$ $\left.\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ state at $75 \mathrm{~K}$. The $\chi_{\mathrm{M}} T$ values rapidly increased to $11.5 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ at $2 \mathrm{~K}$ and dropped to $5.3 \mathrm{~cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{K}$ for $\bf{2}$ at $11 \mathrm{~K}$ (blue curve in Fig. $5 \mathrm{a}$), then returned to $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{NC}-\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ state at $150 \mathrm{~K}$. The photomagnetic results confirmed that MMCT behavior could be excited by light irradiation and returned with thermal treatment.

    The disparate magnetic properties of complexes $\bf{1}$ and $\bf{2}$ should lie in their structures, which may arise from their different intermolecular interactions and crystal packings. For $\bf{1}$, there are significant hydrogen bonding interactions between solvent molecules and the free terminal cyanide groups. No significant hydrogen bonding interactions are observed in $\bf{2}$. This could affect the crystal field experienced by the iron center, as well as the redox potential of the iron center. This explains why $\bf{1}$ and $\bf{2}$ have different transition temperatures. Furthermore, the different charge transfer behaviors of $\bf{1}$ and $\bf{2}$ prior to light irradiation stem primarily from distinct coordination environments and intra chain structures for $\bf{1}$ and $\bf{2}$.

    To further explore the influence of solvents on their charge transfer behavior, we collected X - ray diffraction data for $\bf{2}$ at temperatures ranging from 120 to $225 \mathrm{~K}$. Detailed crystallographic data are presented in Table S1, and the structures of multiple temperatures for $\bf{2}$ were overlapped together to probe the trend of bond length and angle changes with temperature (Fig. 6). The Co1-N and $\mathrm{Co} 2-\mathrm{N}$ bond lengths increase by 0.0197 and $0.0194 \mathrm{~nm}$ from 120 to 225 $\mathrm{K}$, respectively. Meanwhile, the $\angle \mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3$ decreases $1.21^{\circ}$ and the $\angle \mathrm{N} 5-\mathrm{C} 02-\mathrm{N} 6$ increases $1.31^{\circ}$. As for the $\mathrm{Co}-\mathrm{N} \equiv \mathrm{C}$ bond angles, the $\angle \mathrm{C} 5-$ $\mathrm{N} 2-\mathrm{Co} 1, \angle \mathrm{C} 4-\mathrm{N} 5-\mathrm{Co} 2$, and $\angle \mathrm{C} 2-\mathrm{N} 6-\mathrm{Co} 2$ decrease $2.9^{\circ}, 3.6^{\circ}$, and $3.5^{\circ}$, respectively. It indicates that the coordination environment of the cobalt center has changed. It is noted that the distortion degree of the octahedral field in the cobalt center is increased upon the heating process. The cobalt octahedron with a large distortion degree favors the high spin $\left\{\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right.$ $\left.\mathrm{CN}-\mathrm{Co}^{\mathrm{Ⅱ}}{ }_{\mathrm{HS}}-\mathrm{NC}-\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ state. This is consistent with the reported literature [14]. In general, the parameter$\mathrm{CShM}_{\mathrm{M}}$ and Co1 $(\mathrm{M}=\mathrm{Co}, \mathrm{Fe})$ both can be used to evaluate the geometry deviation from the standard octahedron of the metal center $\left(\mathrm{CShM}_{\mathrm{M}}\right.$ is analyzed by SHAPE software). For the Fe/Co charge-transfer systems, a smaller $\mathrm{CShM}_{\mathrm{M}}$ value favors the $\left\{\mathrm{Fe}^{\mathrm{Ⅱ}}{ }_{\mathrm{LS}}-\mathrm{CN}-\right.$ $\left.\mathrm{Co}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}-\mathrm{NC}-\mathrm{Fe}^{\mathrm{Ⅲ}}{ }_{\mathrm{LS}}\right\}$ state. From Table 1, the values of $\mathrm{CShM}_{\mathrm{Co1}}$ and $\mathrm{CShM}_{\mathrm{C} 02}$ increase by 0.029 and 0.018 from 120 to $225 \mathrm{~K}$, respectively. And the values of Co1 and Co2 increase by 7.88 and 7.06, respectively. Based on these results, we think that the changes in the interaction between solvents and intra-chain molecules can modulate the degree of distortion of the $\left[\mathrm{CoN}_{6}\right]$ octahedral and ligand fields around cobalt ions, resulting in different MMCT behaviors.

    Figure 6

    Figure 6.  Overlap diagrams of the structures of $\bf{2}$ at different temperatures centered on $\mathrm{Co} 2$

    Table 1

    Table 1.  Main structural parameters for 2 at different temperaturesa
    下载: 导出CSV
    Parameter 2-120K 2-190K 2-225K 2-desolvated
    Formula $ \mathrm{C}_{52.5} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} \mathrm{O}_{0.5} $ $ \mathrm{C}_{52.33} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} \mathrm{O}_{0.34} $ $ \mathrm{C}_{52} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} $ $ \mathrm{C}_{52} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} $
    Formula weight 1239.38 1234.76 1225.38 1225.38
    $ d(\mathrm{Co} 1-\mathrm{N} 1) / \mathrm{nm} $ $ 0.1934(2) $ $ 0.2123(2) $ $ 0.2129(2) $ $ 0.2130(2) $
    $ d(\mathrm{Co} 1-\mathrm{N} 2) / \mathrm{nm} $ $ 0.1896(2) $ $ 0.2122(2) $ $ 0.2121(2) $ $ 0.2127(2) $
    $ d(\mathrm{Co} 1-\mathrm{N} 3) / \mathrm{nm} $ $ 0.1890(2) $ $ 0.2106(2) $ $ 0.2109(2) $ $ 0.2108(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 4) / \mathrm{nm} $ $ 0.1927(2) $ $ 0.2103(2) $ $ 0.2106(2) $ $ 0.2114(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 5) / \mathrm{nm} $ $ 0.1900(2) $ $ 0.2137(2) $ $ 0.2144(2) $ $ 0.2148(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 6) / \mathrm{nm} $ $ 0.1890(2) $ $ 0.2097(2) $ $ 0.2099(2) $ $ 0.2089(2) $
    Co1b 14.32 22.36 22.2 20.76
    $ \mathrm{CShM}_{\mathrm{Col}}{ }^{\mathrm{e}} $ 0.034 0.062 0.063 0.058
    Co2 4.48 11.68 11.54 8.48
    $ \mathrm{CShM}_{\mathrm{C} 02} $ 0.010 0.025 0.028 0.024
    Fe1 26.89 27.46 28 27.75
    $ \mathrm{CShM}_{\mathrm{Fe} 1} $ 0.143 0.124 0.124 0.123
    Fe2 25.49 27.32 26.95 27.38
    $ \mathrm{CShM}_{\mathrm{Fe} 2} $ 0.120 0.117 0.114 0.116
    $ \angle \mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3 $ $ 88.79(8) $ $ 87.72(8) $ $ 87.58(8) $ $ 87.60(8) $
    $ \angle \mathrm{N} 5-\mathrm{Co} 2-\mathrm{N} 6 $ $ 89.43(9) $ $ 90.92(8) $ $ 90.74(8) $ $ 90.59(8) $
    $ \angle \mathrm{C} 5-\mathrm{N} 2-\mathrm{Co} 1 $ $ 164.0(2) $ $ 160.9(2) $ 161.1(2) $ 161.2(2) $
    $ \angle \mathrm{C} 1-\mathrm{N} 3-\mathrm{Co} 1 $ $ 173.50(19) $ $ 173.46(19) $ $ 173.1(2) $ $ 172.5(2) $
    $ \angle \mathrm{C} 4-\mathrm{N} 5-\mathrm{Co} 2 $ $ 167.2(2) $ $ 163.6(2) $ $ 163.6(2) $ $ 163.8(2) $
    $ \angle \mathrm{C} 2-\mathrm{N} 6-\mathrm{Co} 2 $ $ 174.0(2) $ $ 170.0(2) $ $ 170.5(2) $ 171.2(2)
    ${ }^{a}$ The disordering of methanol solvents disorder leads to a change in the atomic number of carbon and oxygen in variable temperature X-ray diffraction measurements; bM : the sum of $|90-\alpha|$ for the $12 \mathrm{cis}-\mathrm{N}-$ metal $-\mathrm{N}$ angles around the metal atom; ${ }^{\mathrm{C}} \mathrm{CShM}_{\mathrm{M}}$ : continuous shape measure relative to the ideal octahedron of the metal center.

    In this study, we report the synthesis of two chain complexes, denoted as $\bf{1}$ and $\bf{2}$, using anionic substitution in the methanol-water system. Detailed investigations of the structural and magnetic properties revealed that complex $\bf{1}$ exhibited thermal and light - induced charge transfer behavior, while complex $\bf{2}$ exhibited thermal and solvent-induced two-step spin transition behavior. Structural studies suggest that the different photomagnetic properties of $\bf{1}$ and $\bf{2}$ may be attributed to hydrogen bonding interactions between the solvent molecules and free terminal cyanide groups. Our findings demonstrate that the guest solvent molecules can also significantly modulate the metal-to-metal charge transfer (MMCT) through intermolecular interactions. Moreover, uncoordinated anions can modulate the molecular structure and MMCT by affecting the crystallographic environment of the complexes. These results provide valuable insights into the precise modulation of charge transfer.


    1. [1]

      Sato O, Iyoda T, Fujishima A, Hashimoto K. Photoinduced magnetization of a cobalt-iron cyanide[J]. Science, 1996, 272(5262):  704-705. doi: 10.1126/science.272.5262.704

    2. [2]

      Cambi L, Szegö L. Über die magnetische Susceptibilität der komplexen Verbindungen[J]. Berichte der deutschen chemischen Gesellschaft (Reihe A und B), 1931, 64(10):  2591-2598. doi: 10.1002/cber.19310641002

    3. [3]

      Wang M, Li Z Y, Ishikawa R, Yamashita M. Spin crossover and valence tautomerism conductors[J]. Coord. Chem. Rev., 2021, 435:  213819. doi: 10.1016/j.ccr.2021.213819

    4. [4]

      Wang J H, Li Z Y, Yamashita M, Bu X H. Recent progress on cyanobridged transition-metal-based single-molecule magnets and singlechain magnets[J]. Coord. Chem. Rev., 2021, 428:  213617. doi: 10.1016/j.ccr.2020.213617

    5. [5]

      Hu J X, Luo L, Lv X J, Liu L, Liu Q, Yang Y K, Duan C Y, Luo Y, Liu T. Light-induced bidirectional metal-to-metal charge transfer in a linear Fe2Co complex[J]. Angew. Chem. Int. Ed., 2017, 56(26):  7663-7668. doi: 10.1002/anie.201703768

    6. [6]

      Phonsri W, Harding P, Liu L J, Telfer S G, Murray K S, Moubaraki B, Ross T M, Jameson G N L, Harding D J. Solvent modified spin crossover in an iron(Ⅲ) complex: Phase changes and an exceptionally wide hysteresis[J]. Chem. Sci., 2017, 8(5):  3949-3959. doi: 10.1039/C6SC05317C

    7. [7]

      Chen X Y, Shi H Y, Huang R B, Zheng L S, Tao J. Temperature, light and solvent-induced spin transition in a 3D 2-fold interpenetrated PtStype porous coordination polymer[J]. Chem. Commun., 2013, 49(93):  10977-10979. doi: 10.1039/c3cc45691a

    8. [8]

      Nihei M, Sekine Y, Suganami N, Nakazawa K, Nakao A, Nakao H, Murakami Y, Oshio H. Controlled intramolecular electron transfers in cyanide- bridged molecular squares by chemical modifications and external stimuli[J]. J. Am. Chem. Soc., 2011, 133(10):  3592-3600. doi: 10.1021/ja109721w

    9. [9]

      Lescouëzec R, Toma L M, Vaissermann J, Verdaguer M, Delgado F S, Ruiz- Pérez C, Lloret F, Julve M. Design of single chain magnets through cyanide- bearing six- coordinate complexes[J]. Coord. Chem. Rev., 2005, 249(23):  2691-2729. doi: 10.1016/j.ccr.2005.09.017

    10. [10]

      Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A. Spin crossover nanomaterials: From fundamental concepts to devices[J]. Adv. Mater., 2018, 30(5):  1703862. doi: 10.1002/adma.201703862

    11. [11]

      Zlobin I S, Nelyubina Y V, Novikov V V. Molecular compounds in spintronic devices: An intricate marriage of chemistry and physics[J]. Inorg. Chem., 2022, 61(33):  12919-12930. doi: 10.1021/acs.inorgchem.2c00859

    12. [12]

      Kipgen L, Bernien M, Tuczek F, Kuch W. Spin-crossover molecules on surfaces: From isolated molecules to ultrathin films[J]. Adv. Mater., 2021, 33(24):  2008141. doi: 10.1002/adma.202008141

    13. [13]

      贺艳丽, 孟银杉, 孙慧莹, 姜文静, 矫成奇, 刘涛. 氰基桥联的Fe2Ni双之字链的合成与磁性[J]. 无机化学学报, 2019,35,(9): 1570-1578. HE Y L, MENG Y S, SUN H Y, JIANG W J, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Ni double-zigzag chains[J]. Chinese J. Inorg. Chem., 2019, 35(9):  1570-1578.

    14. [14]

      Jiao C Q, Meng Y S, Yu Y, Jiang W J, Wen W, Oshio H, Luo Y, Duan C Y, Liu T. Effect of intermolecular interactions on metal-to-metal charge transfer: A combined experimental and theoretical investigation[J]. Angew. Chem. Int. Ed., 2019, 58(47):  17009-17015. doi: 10.1002/anie.201909495

    15. [15]

      王俊丽, 朱海浪, 刘强, 段春迎, 刘涛. 光诱导的单链磁体性质及其研究进展[J]. 中国科学:化学, 2017,47,(6): 724-733. WANG J L, ZHU H L, LIU Q, DUAN C Y, LIU T. The properties of light- induced single- chain magnets and its research progress[J]. Scientia Sinica Chimica, 2017, 47(6):  724-733.

    16. [16]

      Wei R J, Nakahara R, Cameron J M, Newton G N, Shiga T, Sagayama H, Kumai R, Murakami Y, Oshio H. Solvent-induced on/off switching of intramolecular electron transfer in a cyanide-bridged trigonal bipyramidal complex[J]. Dalton Trans., 2016, 45(43):  17104-17107. doi: 10.1039/C6DT03416K

    17. [17]

      吴家起, 孟银杉, 朱海浪, 矫成奇, 刘涛. 氰基桥联的Fe2Ni2单分子磁体的合成与磁性[J]. 无机化学学报, 2020,36,(12): 2331-2339. WU J Q, MENG Y S, ZHU H L, JIAO C Q, LIU T. Synthesis and magnetism of cyano-bridged Fe2Ni2 single-molecule magnets[J]. Chinese J. Inorg. Chem., 2020, 36(12):  2331-2339.

    18. [18]

      Sato O. Optically switchable molecular solids: Photoinduced spin- crossover, photochromism, and photoinduced magnetization[J]. Acc. Chem. Res., 2003, 36(9):  692-700. doi: 10.1021/ar020242z

    19. [19]

      Aguilà D, Prado Y, Koumousi E S, Mathonière C, Clérac R. Switchable Fe/Co Prussian blue networks and molecular analogues[J]. Chem. Soc. Rev., 2016, 45(1):  203-224. doi: 10.1039/C5CS00321K

    20. [20]

      Verdaguer M, Bleuzen A, Marvaud V, Vaissermann J, Seuleiman M, Desplanches C, Scuiller A, Train C, Garde R, Gelly G, Lomenech C, Rosenman I, Veillet P, Cartier C, Villain F. Molecules to build solids: High TC molecule-based magnets by design and recent revival of cyano complexes chemistry[J]. Coord. Chem. Rev., 1999, 190-192:  1023-1047. doi: 10.1016/S0010-8545(99)00156-3

    21. [21]

      Yang Y K, Jiao C Q, Meng Y S, Yao N T, Jiang W J, Liu T. Substituent effect on metal- to- metal charge transfer behavior of cyanide- bridged {Fe2Co2} square[J]. Inorg. Chem. Commun., 2021, 130:  108712. doi: 10.1016/j.inoche.2021.108712

    22. [22]

      Kamilya S, Ghosh S, Li Y, Dechambenoit P, Rouzières M, Lescouëzec R, Mehta S, Mondal A. Two-step thermoinduced metal-to-metal electron transfer and ON/OFF photoswitching in a molecular [Fe2Co2] square complex[J]. Inorg. Chem., 2020, 59(17):  11879-11888. doi: 10.1021/acs.inorgchem.0c02053

    23. [23]

      Jiang W J, Jiao C Q, Meng Y S, Zhao L, Liu Q, Liu T. Switching single chain magnet behavior via photoinduced bidirectional metal- to-metal charge transfer[J]. Chem. Sci., 2018, 9(3):  617-622. doi: 10.1039/C7SC03401F

    24. [24]

      Avila Y, Acevedo-Peña P, Reguera L, Reguera E. Recent progress in transition metal hexacyanometallates: From structure to properties and functionality[J]. Coord. Chem. Rev., 2022, 453:  214274. doi: 10.1016/j.ccr.2021.214274

    25. [25]

      Gütlich P, Garcia Y, Woike T. Photoswitchable coordination compounds[J]. Coord. Chem. Rev., 2001, 219-221:  839-879. doi: 10.1016/S0010-8545(01)00381-2

    26. [26]

      Hoshino N, Iijima F, Newton G N, Yoshida N, Shiga T, Nojiri H, Nakao A, Kumai R, Murakami Y, Oshio H. Three-way switching in a cyanide-bridged [CoFe] chain[J]. Nat. Chem., 2012, 4(11):  921-926. doi: 10.1038/nchem.1455

    27. [27]

      Meng L Y, Deng Y F, Holmes S M, Zhang Y Z. Thermo- and photoinduced electron transfer in a series of [Fe2Co2] capsules[J]. Dalton Trans., 2023, 52(6):  1616-1622. doi: 10.1039/D2DT03328C

    28. [28]

      Liu Q, Hu J X, Meng Y S, Jiang W J, Wang J L, Wen W, Wu Q, Zhu H L, Zhao L, Liu T. Asymmetric coordination toward a photoinduced single- chain magnet showing high coercivity values[J]. Angew. Chem. Int. Ed., 2021, 60(19):  10537-10541. doi: 10.1002/anie.202017249

    29. [29]

      Liu Q, Yao N T, Sun H Y, Hu J X, Meng Y S, Liu T. Light actuated single- chain magnet with magnetic coercivity[J]. Inorg. Chem. Front., 2022, 9(19):  5093-5104. doi: 10.1039/D2QI01371A

    30. [30]

      Dobbelaar E, Jakobsen V B, Trzop E, Lee M, Chikara S, Ding X, Müller Bunz H, Esien K, Felton S, Carpenter M A, Collet E, Morgan G G, Zapf V S. Thermal and magnetic field switching in a two-step hysteretic Mn spin crossover compound coupled to symmetry breakings[J]. Angew. Chem. Int. Ed., 2022, 61:  e202114021. doi: 10.1002/anie.202114021

    31. [31]

      Huang X D, Wen G H, Bao S S, Jia J G, Zheng L M. Thermo- and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties[J]. Chem. Sci., 2021, 12(3):  929-937. doi: 10.1039/D0SC04851H

    32. [32]

      矫成奇, 姜文静, 文雯, 任奕, 王佳良, 刘涛, 何成. 氰基桥联的Fe(Ⅲ)-Mn(Ⅱ)双金属链的可控组装和磁性作用的调控[J]. 无机化学学报, 2016,32,(9): 1637-1646. JIAO C Q, JIANG W J, WEN W, ZREN Y, WANG J L. LIU T, HE C. Tuning assembly and magnetic interactions of cyano-bridged Fe(Ⅲ)- Mn(Ⅱ) bimetallic chains[J]. Chinese J. Inorg. Chem., 2016, 32(9):  1637-1646.

    33. [33]

      Habarakada U, Boonprab T, Harding P, Murray K S, Phonsri W, Neville S M, Ahmed M, Harding D J. Solvent effects on the structural and magnetic properties of Fe spin- crossover complexes[J]. Cryst Growth Des., 2022, 22(8):  4895-4905. doi: 10.1021/acs.cgd.2c00390

    34. [34]

      Díaz- Torres R, Boonprab T, Gómez- Coca S, Ruiz E, Chastanet G, Harding P, Harding D J. Structural and theoretical insights into solvent effects in an iron(Ⅲ) SCO complex[J]. Inorg. Chem. Front., 2022, 9(20):  5317-5326. doi: 10.1039/D2QI01159J

    35. [35]

      Zhao X H, Shao D, Chen J T, Gan D X, Yang J, Zhang Y Z. A trinu- clear {Fe2Fe} complex involving both spin and non- spin transitions exhibits three- step and wide thermal hysteresis[J]. Sci. China Chem., 2022, 65(3):  532-538. doi: 10.1007/s11426-021-1153-0

    36. [36]

      Shen G D, Lv X, Qian W X, Bao W L. Cu2O-catalyzed Ullmann-type reaction of vinyl bromides with imidazole and benzimidazole[J]. Tetrahedron Lett., 2008, 49(29/30):  4556-4559.

    37. [37]

      Gu Z G, Liu W, Yang Q F, Zhou X H, Zuo J L, You X Z. Cyano-bridged Fe2Cu3 and Fe4Ni4 complexes: Syntheses, structures, and magnetic properties[J]. Inorg. Chem., 2007, 46(8):  3236-3244. doi: 10.1021/ic062267q

  • Scheme 1  Self-assembly processes of complexes $\bf{1}$ and $\bf{2}$

    The black wavy line represents $\mathrm{C} \equiv \mathrm{N}$ and the blue arc represents PzTp for clarity.

    Figure 1  (a) Asymmetric unit of complex 1; (b) Square-wave type chain structure of $\bf{1}$

    Some $\mathrm{H}$ atoms of $\bf{1}$ and a part of the building blocks are omitted for clarity; Atomic scheme: Co, sky blue; Fe, light red; Cl, light green; N, blue; O, red; C, gray; H pink; B, yellow.

    Figure 2  (a) Asymmetric unit of complex 2; (b) Double zigzag chain structure of 2; (c) Packing diagram viewed along the $a$-axis of 2; (d) Packing diagram viewed along the $c$-axis of $\bf{2}$

    All $\mathrm{H}$ atoms and a part of building blocks are omitted for clarity.

    Figure 3  Temperature dependence observed for the $\chi_{\mathrm{M}} T$ values of $\bf{1}$ (a) and $\bf{2}$ (b) under a de field of 5000 Oe (1) and 1000 Oe (2)

    Figure 4  Variable-temperature solid-state infrared spectroscopy of $\bf{1}$ (a) and $\bf{2}$ (b) at the near transition temperature

    Figure 5  (a) Plots of $\chi_{\mathrm{M}} T$ vs temperature of $\bf{1}$ and $\bf{2}$ irradiated at 808 and $532 \mathrm{~nm}$ at 5000 Oe (1) and 1000 Oe (2); (b) Plots of $\chi_{\mathrm{M}} T$ vs time during cycles of successive irradiation at $808 \mathrm{~nm}$ (orange) and $532 \mathrm{~nm}$ (green) at $10 \mathrm{~K}$ of $\bf{1}$

    Figure 6  Overlap diagrams of the structures of $\bf{2}$ at different temperatures centered on $\mathrm{Co} 2$

    Table 1.  Main structural parameters for 2 at different temperaturesa

    Parameter 2-120K 2-190K 2-225K 2-desolvated
    Formula $ \mathrm{C}_{52.5} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} \mathrm{O}_{0.5} $ $ \mathrm{C}_{52.33} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} \mathrm{O}_{0.34} $ $ \mathrm{C}_{52} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} $ $ \mathrm{C}_{52} \mathrm{H}_{44} \mathrm{ B}_{2} \mathrm{CoFe}_{2} \mathrm{ N}_{26} $
    Formula weight 1239.38 1234.76 1225.38 1225.38
    $ d(\mathrm{Co} 1-\mathrm{N} 1) / \mathrm{nm} $ $ 0.1934(2) $ $ 0.2123(2) $ $ 0.2129(2) $ $ 0.2130(2) $
    $ d(\mathrm{Co} 1-\mathrm{N} 2) / \mathrm{nm} $ $ 0.1896(2) $ $ 0.2122(2) $ $ 0.2121(2) $ $ 0.2127(2) $
    $ d(\mathrm{Co} 1-\mathrm{N} 3) / \mathrm{nm} $ $ 0.1890(2) $ $ 0.2106(2) $ $ 0.2109(2) $ $ 0.2108(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 4) / \mathrm{nm} $ $ 0.1927(2) $ $ 0.2103(2) $ $ 0.2106(2) $ $ 0.2114(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 5) / \mathrm{nm} $ $ 0.1900(2) $ $ 0.2137(2) $ $ 0.2144(2) $ $ 0.2148(2) $
    $ d(\mathrm{Co} 2-\mathrm{N} 6) / \mathrm{nm} $ $ 0.1890(2) $ $ 0.2097(2) $ $ 0.2099(2) $ $ 0.2089(2) $
    Co1b 14.32 22.36 22.2 20.76
    $ \mathrm{CShM}_{\mathrm{Col}}{ }^{\mathrm{e}} $ 0.034 0.062 0.063 0.058
    Co2 4.48 11.68 11.54 8.48
    $ \mathrm{CShM}_{\mathrm{C} 02} $ 0.010 0.025 0.028 0.024
    Fe1 26.89 27.46 28 27.75
    $ \mathrm{CShM}_{\mathrm{Fe} 1} $ 0.143 0.124 0.124 0.123
    Fe2 25.49 27.32 26.95 27.38
    $ \mathrm{CShM}_{\mathrm{Fe} 2} $ 0.120 0.117 0.114 0.116
    $ \angle \mathrm{N} 2-\mathrm{Co} 1-\mathrm{N} 3 $ $ 88.79(8) $ $ 87.72(8) $ $ 87.58(8) $ $ 87.60(8) $
    $ \angle \mathrm{N} 5-\mathrm{Co} 2-\mathrm{N} 6 $ $ 89.43(9) $ $ 90.92(8) $ $ 90.74(8) $ $ 90.59(8) $
    $ \angle \mathrm{C} 5-\mathrm{N} 2-\mathrm{Co} 1 $ $ 164.0(2) $ $ 160.9(2) $ 161.1(2) $ 161.2(2) $
    $ \angle \mathrm{C} 1-\mathrm{N} 3-\mathrm{Co} 1 $ $ 173.50(19) $ $ 173.46(19) $ $ 173.1(2) $ $ 172.5(2) $
    $ \angle \mathrm{C} 4-\mathrm{N} 5-\mathrm{Co} 2 $ $ 167.2(2) $ $ 163.6(2) $ $ 163.6(2) $ $ 163.8(2) $
    $ \angle \mathrm{C} 2-\mathrm{N} 6-\mathrm{Co} 2 $ $ 174.0(2) $ $ 170.0(2) $ $ 170.5(2) $ 171.2(2)
    ${ }^{a}$ The disordering of methanol solvents disorder leads to a change in the atomic number of carbon and oxygen in variable temperature X-ray diffraction measurements; bM : the sum of $|90-\alpha|$ for the $12 \mathrm{cis}-\mathrm{N}-$ metal $-\mathrm{N}$ angles around the metal atom; ${ }^{\mathrm{C}} \mathrm{CShM}_{\mathrm{M}}$ : continuous shape measure relative to the ideal octahedron of the metal center.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  556
  • HTML全文浏览量:  58
文章相关
  • 发布日期:  2023-10-10
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-06-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章