

一维镉(Ⅱ)和镍(Ⅱ)配位聚合物的合成、晶体结构、荧光及磁性质
English
Syntheses, Crystal Structures, Luminescent and Magnetic Properties of Two 1D Cadmium(Ⅱ) and Nickel(Ⅱ) Coordination Polymers
-
0. Introduction
In the past few decades, the design and hydro-thermal syntheses of functional coordination polymers have attracted tremendous attention owing to their fascinating architectures and topologies, as well as potential applications in catalysis, magnetism, lumine-scence, and gas absorption[1-8]. However, it is difficult to predict the structures of coordination polymers, because a lot of factors influence the construction of complexes, such as the structural features of organic ligands, the coordination requirements of metal ions, solvent systems, temperatures, and pH values[9-15].
In this regard, various types of aromatic polycar-boxylic acids have been proved to be versatile and efficient candidates for constructing diverse coordina-tion polymers due to their rich coordination chemistry, tunable degree of deprotonation, and ability to act as H-bond acceptors and donors[11, 13, 15-19].
As a combination of the aforementioned aspects and our previous research work, we have selected a novel biphenyl tetracarboxylate ligand, 3-(2, 4-dicar-boxyphenyl)-2, 6-pyridinedicarboxylic acid (H4L) and explored it for the construction of novel coordination polymers. The H4L block possesses the following features: (1) it can twist and rotate freely to generate different angles between the two aromatic planes via the C-C bond to furnish a subtle conformational adaptation; (2) it has nine potential coordination sites (eight carboxylate O donors and one N donor), which can lead to diverse coordination patterns and high dimensionalities, especially when acting as a multiply bridging spacer; (3) apart from a limited number of coordination compounds derived from H4L, this acid block remains poorly used for the generation of coordination polymers[20]. Given these features, the main objective of the present study consisted in the explora-tion of H4L as a novel biphenyl tetracarboxylate block for the assembly of diverse metal-organic networks.
In this work, we report the syntheses, crystal structures, luminescent and magnetic properties of two Cd(Ⅱ) and Ni(Ⅱ) coordination polymers constructed from biphenyl-type tetracarboxylate ligands.
1. Experimental
1.1 Reagents and physical measurements
All chemicals and solvents were of AR grade and used without further purification. Carbon, hydrogen and nitrogen were determined using an Elementar Vario EL elemental analyzer. IR spectra were recorded by a Bruker EQUINOX 55 spectrometer using KBr pellets. Thermogravimetric analysis (TGA) data were collected on a LINSEIS STA PT1600 thermal analyzer with a heating rate of 10 ℃·min-1. Excitation and emission spectra were recorded on an Edinburgh FLS920 fluorescence spectrometer using the solid samples at room temperature. Magnetic susceptibility data were collected in the 2~300 K temperature range on a Quantum Design SQUID Magnetometer MPMS XL-7 with a field of 0.1 T. A correction was made for the diamagnetic contribution prior to data analysis.
1.2 Synthesis of {[Cd2(μ3-L)(phen)3]·5H2O}n (1)
A mixture of CdCl2H2O (0.040 g, 0.20 mmol), H4L (0.033 g, 0.10 mmol), phen (0.060 g, 0.3 mmol), NaOH (0.016 g, 0.40 mmol), and H2O (10 mL) was stirred at room temperature for 15 min, and then sealed in a 25 mL Teflon-lined stainless steel vessel, and heated at 160 ℃ for 3 days, followed by cooling to room temperature at a rate of 10 ℃·h-1. Colourless block-shaped crystals of 1 were isolated manually, and washed with distilled water. Yield: 52% (based on H4L). Anal. Calcd. for C51H39Cd2N7O13(%): C 51.79, H 3.32, N 8.29; Found(%): C 51.64, H 3.31, N 8.32. IR(KBr, cm-1): 3 540w, 3 055w, 1 607s, 1 556s, 1 515m, 1 454w, 1 424m, 1 357s, 1 275w, 1 250w, 1 220w, 1 184 w, 1 138w, 1 102w, 1 016w, 908w, 853m, 817w, 781w, 730w, 684w, 638w.
1.3 Synthesis of {[Ni2(μ3-L)(phen)3]·5H2O}n(2)
The preparation of 2 was similar to that of 1 except NiCl2·6H2O was used instead of CdCl2H2O. After cooling the reaction mixture to room temperature, green block-shaped crystals of 2 were isolated manually, washed with distilled water, and dried. Yield: 61% (based on H4L). Anal. Calcd. for C51H39Ni2N7O13(%): C, 56.97; H, 3.66; N, 9.12. Found(%): C, 57.13; H, 3.65; N, 9.07%. IR (KBr, cm-1): 3 572m, 3 045w, 1 618s, 1 541s, 1 510m, 1 464w, 1 408m, 1 367s, 1 275w, 1 209w, 1 184w, 1 148w, 1 097w, 1 010w, 954w, 913w, 857m, 817w, 786w, 765w, 724m, 678w, 664w.
The compounds are insoluble in water and common organic solvents, such as methanol, ethanol, acetone, and DMF.
1.4 Structure determinations
Two single crystals with dimensions of 0.26 mm×0.24 mm×0.23 mm (1) and 0.26 mm×0.22 mm×0.21 mm (2) were collected at 293(2) K on a Bruker SMART APEX Ⅱ CCD diffractometer with Mo Kα radiation (λ=0.071 073 nm) for 1 and Cu Kα radiation (λ=0.154 184 nm) for 2. The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-2014 program[21]. All non-hydrogen atoms were refined anisotropically. All the hydrogen atoms were positioned geometrically and refined using a riding model. Disordered solvent molecules in 1 and 2 were removed using the SQUEEZE routine in PLATON[22]. The number of solvent water molecules was obtained on the basis of elemental and thermogravimetric analyses. A summary of the crystallography data and structure refinements for 1 and 2 is given in Table 1. The selected bond lengths and angles for compounds 1 and 2 are listed in Table 2. Hydrogen bond parameters of compounds 1 and 2 are given in Table 3 and 4.
Table 1
Compound 1 2 Chemical formula C51H39Cd2N7O13 C51H39Ni2N7O13 Molecular weight 1 182.72 1 075.31 Crystal system Orthorhombic Orthorhombic Space group Pbca Pbca a/nm 1.845 88(7) 1.809 05(5) b/nm 1.691 95(6) 1.676 82(4) c/nm 3.012 97(11) 3.016 46(8) V/nm3 9.409 9(6) 9.150 3(4) Z 8 8 F(000) 4 512 4 272 θ range for data collection/(°) 3.336~25.049 3.816~ 69.987 Limiting indices -12 ≤ h ≤ 21, -19 ≤ k ≤ 20, -35 ≤ l ≤ 35 -20 ≤ h ≤ 21, -20 ≤ k ≤ 13, -36 ≤ l ≤ 36 Reflection collected, unique (Rint) 35 201, 8 304 (0.087 9) 36 483, 8 579 (0.099 0) Dc/(g·cm-3) 1.593 1.509 μ/mm-1 0.972 1.633 Data, restraint, parameter 8 304, 0, 631 8 579, 0, 640 Goodness-of-fit on F2 1.142 1.054 Final R indices [I≥2σ(I)] R1, wR2 0.05 63, 0.097 6 0.075 3, 0.157 5 R indices (all data) R1, wR2 0.078 1, 0.092 4 0.125 2, 0.183 5 Largest diff. peak and hole/(e·nm-3) 1 079 and -464 359 and -666 Table 2
1 Cd(1)-O(1) 0.243 6(4) Cd(1)-O(3) 0.232 7(4) Cd(1)-O(8)A 0.220 6(4) Cd(1)-N(1) 0.228 7(4) Cd(1)-N(2) 0.232 7(5) Cd(1)-N(3) 0.238 6(5) Cd(2)-O(2) 0.226 4(4) Cd(2)-O(5) 0.227 4(4) Cd(2)-N(4) 0.234 3(5) Cd(2)-N(5) 0.235 8(5) Cd(2)-N(6) 0.229 4(5) Cd(2)-N(7) 0.239 4(5) O(8)A-Cd(1)-N(1) 104.30(15) O(8)A-Cd(1)-N(2) 148.44(18) N(1)-Cd(1)-N(2) 103.70(18) O(8)A-Cd(1)-O(3) 105.04(15) N(1)-Cd(1)-O(3) 71.99(15) N(2)-Cd(1)-O(3) 97.21(17) O(8)A-Cd(1)-N(3) 81.51(16) N(1)-Cd(1)-N(3) 173.90(17) N(2)-Cd(1)-N(3) 70.21(19) O(3)-Cd(1)-N(3) 108.59(16) O(8)A-Cd(1)-O(1) 92.88(15) N(1)-Cd(1)-O(1) 67.87(15) N(2)-Cd(1)-O(1) 84.41(16) O(3)-Cd(1)-O(1) 138.96(14) N(3)-Cd(1)-O(1) 110.42(15) O(2)-Cd(2)-O(5) 86.00(15) O(2)-Cd(2)-N(6) 102.27(16) O(5)-Cd(2)-N(6) 90.42(18) O(2)-Cd(2)-N(4) 92.71(16) O(5)-Cd(2)-N(4) 105.03(16) N(6)-Cd(2)-N(4) 159.25(18) O(2)-Cd(2)-N(5) 161.74(15) O(5)-Cd(2)-N(5) 89.59(17) N(6)-Cd(2)-N(5) 95.46(18) N(4)-Cd(2)-N(5) 71.34(18) O(2)-Cd(2)-N(7) 98.13(15) O(5)-Cd(2)-N(7) 161.38(17) N(6)-Cd(2)-N(7) 71.0(2) N(4)-Cd(2)-N(7) 92.95(18) N(5)-Cd(2)-N(7) 91.68(16) 2 Ni(1)-O(1) 0.210 0(4) Ni(1)-O(5) 0.204 0(3) Ni(1)-N(2) 0.212 4(4) Ni(1)-N(3) 0.213 3(4) Ni(1)-N(4) 0.217 0(4) Ni(1)-N(5) 0.213 1(4) Ni(2)-O(4)A 0.203 2(4) Ni(2)-O(6) 0.215 4(3) Ni(2)-O(7) 0.214 7(4) Ni(2)-N(1) 0.205 8(4) Ni(2)-N(6) 0.213 6(5) Ni(2)-N(7) 0.214 8(5) O(5)-Ni(1)-O(1) 86.47(15) O(5)-Ni(1)-N(2) 88.73(15) O(1)-Ni(1)-N(2) 102.10(16) O(5)-Ni(1)-N(5) 98.26(16) O(1)-Ni(1)-N(5) 88.49(16) N(2)-Ni(1)-N(5) 167.69(17) N(3)-Ni(1)-O(5) 163.93(15) O(1)-Ni(1)-N(3) 88.01(16) N(3)-Ni(1)-N(2) 77.69(17) N(5)-Ni(1)-N(3) 96.67(17) N(4)-Ni(1)-O(5) 96.27(15) O(1)-Ni(1)-N(4) 165.73(16) N(2)-Ni(1)-N(4) 91.98(17) N(5)-Ni(1)-N(4) 77.25(17) N(4)-Ni(1)-N(3) 92.78(16) O(4)A-Ni(2)-N(1) 97.75(15) O(4)A-Ni(2)-N(6) 160.40(17) N(1)-Ni(2)-N(6) 99.69(17) O(4)A-Ni(2)-O(7) 100.94(15) N(1)-Ni(2)-O(7) 76.07(15) N(6)-Ni(2)-O(7) 91.90(16) O(4)A-Ni(2)-N(7) 86.65(16) N(1)-Ni(2)-N(7) 175.53(17) N(6)-Ni(2)-N(7) 76.09(18) N(7)-Ni(2)-O(7) 102.40(15) O(6)-Ni(2)-O(4)A 92.34(14) N(1)-Ni(2)-O(6) 74.99(14) N(6)-Ni(2)-O(6) 83.65(16) O(7)-Ni(2)-O(6) 149.48(14) N(7)-Ni(2)-O(6) 105.72(15) Symmetry codes: A: -x+1, y-1/2, -z+3/2 for 1; A: -x+1, y+1/2, -z+1/2 for 2. Table 3
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°) O(9)-H(1W)…O(7) 0.085 0.188 2 0.273 1 178.6 O(9)-H(2W)…O(2)A 0.085 0.212 7 0.297 7 179.4 O(10)-H(3W)…O(6) 0.085 0.203 8 0.288 8 179.7 O(10)-H(4W)…O(4)B 0.085 0.200 4 0.285 4 179.3 Symmetry codes: A: -x+1, y+1/2, -z+3/2; B: -x+1/2, y+1/2, z. Table 4
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°) O(9)-H(1W)…O(3)A 0.085 0.19 54 0.280 4 178.8 O(9)-H(2W)…O(11)B 0.085 0.203 5 0.288 5 179.5 O(10)-H(3W)…O(8) 0.085 0.200 1 0.285 1 178.9 O(10)-H(4W)…O(2)B 0.085 0.220 8 0.305 8 179.0 O(11)-H(5W)…O(8) 0.085 0.201 9 0.286 9 179.0 O(11)-H(6W)…O(2)B 0.085 0.211 5 0.296 5 179.3 Symmetry codes: A: x, y+1, z; B: -x+1/2, y+1/2, z. CCDC: 1915948, 1; 1915949, 2.
2. Results and discussion
2.1 Description of the structure
2.1.1 Structure of {[Cd2(μ3-L)(phen)3]·5H2O}n (1)
Compounds 1 and 2 are isostructural (Table 1) and the structure of 1 is discussed in detail as an example. Asymmetric unit of 1 comprises two Cd(Ⅱ) centers (Cd1 and Cd2), one μ3-L4- spacer, three phen moieties, and five lattice water molecules (Fig. 1). The six-coordinated Cd1 atom adopts a distorted octahedral {CdN3O3} geometry, which is populated by one N and two O atoms from one μ3-L4- spacer and a carboxylate O donor from another μ3-L4- ligand, in addition to two phen N donors. The Cd2 center is also six-coordinated with a distorted octahedral {CdN4O2} environment, which is filled by two O atoms of μ3-L4- block and two pairs of phen N donors. The lengths of the Cd-O and Cd-N bonds are 0.220 6(4)~0.243 6(4) and 0.228 7(4)~0.239 4(5) nm, respectively, which are within the normal values for related Cd(Ⅱ) derivat- ives[11, 15, 23]. The L4- block acts as a hexadentate μ3-bridging ligand (Scheme 1), in which the four carboxy-late groups adopt different monodentate or bidentate bridging modes. The dihedral angle of two aromatic rings in the L4- ligand is 62.53°. The carboxylate groups of L4- blocks bridge alternately adjacent Cd(Ⅱ) atoms to form a 1D chain (Fig. 2). These chains are further extended into a 2D supramolecular network via the O-H…O hydrogen-bonding interactions (Fig. 3 and Table 3).
Figure 1
Scheme 1
Figure 2
Figure 3
2.2 TGA analysis
To determine the thermal stability of polymers 1 and 2, their thermal behaviors were investigated under nitrogen atmosphere by thermogravimetric analysis (TGA). As shown in Fig. 4, TGA curve of compound 1 showed that there was a loss of five lattice water molecules between 30 and 130 ℃ (Obsd. 7.4%; Calcd. 7.6%); further heating above 312 ℃ led to a decomposition of the dehydrated sample. Compound 2 lost its five lattice water molecules in a range of 30~160 ℃ (Obsd. 8.2%; Calcd. 8.4%), followed by the decomposition at 294 ℃.
Figure 4
2.3 Luminescent properties
Solid-state emission spectra of H4L and cadmium(Ⅱ) compound 1 were measured at room temperature (Fig. 5). The spectrum of H4L revealed a weak emission with a maximum at 366 nm (λex=325 nm). In comparison with H4L, the coordination compound 1 exhibited more extensive emission with a maximum at 358 nm (λex=315 nm). These emissions correspond to intraligand π-π* or n-π* transition of H4L[11, 13, 15]. Enhancement of the luminescence in 1 compared to H4L can be explained by the coordination of ligands to Cd(Ⅱ); the coordination can augment a rigidity of ligands and reduce an energy loss due to radiationless decay[13, 15, 23].
Figure 5
2.4 Magnetic properties
Variable-temperature magnetic susceptibility measurements were performed on powder samples of 2 in the 2~300 K temperature range (Fig. 6). For 2, as shown in Fig. 6, the χMT value at room temperature was 2.03 cm3·mol-1·K, which is close to the value (2.00 cm3·mol-1·K) for two magnetically isolated high-spin Ni(Ⅱ) ion (S=1, g=2.0). The χMT values increased slowly on lowering the temperature until about 48 K, and then increased quickly to 3.42 cm3·mol-1·K at 2.0 K. Between 2 and 300 K, the magnetic susceptibilities can be fitted to the Curie-Weiss law with C=1.99 cm3·mol-1·K and θ=5.76 K. These results indicate a ferro-magnetic interaction between the adjacent Ni(Ⅱ) centers in compound 2.
Figure 6
The magnetic data for 2 can be fitted with the expression for a dinuclear Ni(Ⅱ) unit[24]:
$ {\chi _{{\rm{M}}, {\rm{ dimer }}}} = \frac{{{N_{\rm{A}}}{g^2}\mu _{\rm{B}}^2}}{{9kT}}\frac{{5 + \exp ( - 5.75x)}}{{5 + 3\exp ( - 5.75x) + \exp ( - 8.63x)}} $
where x=J/(kT). The best fit for the experimentally observed data was obtained with a J value of 2.48 cm-1, which indicates reasonable ferromagnetic interactions.
According to the chain structure of 2 (Fig. 2), adjacent Ni(Ⅱ) centers within the Ni2 unit possess a single type of the magnetic exchange path, namely through one syn-anti carboxylate bridge, which explains a ferromagnetic exchange observed in this compound. The syn-anti carboxylate bridging moiety has been observed in some Ni(Ⅱ) complexes with ferromagnetic interactions reported elsewhere[25-28].
3. Conclusions
In summary, we have successfully synthesized and characterized two new cadmium/nickel coordination polymers by using one biphenyl-type tetracarboxylic acid as bridging ligand under hydrothermal condition. Two polymers all feature 1D chain. Besides, the magnetic (for 2) and luminescent (for 1) properties were also investigated and discussed. The results show that such tetracarboxylic acid can be used as a versatile multifunctional building block toward the generation of new coordination polymers.
-
-
[1]
Cui Y J, Yue Y F, Qian G D, et al. Chem. Rev., 2012, 112:1126-1162 doi: 10.1021/cr200101d
-
[2]
Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38:1477-1504 doi: 10.1039/b802426j
-
[3]
Loukopoulos E, Kostakis G E. J. Coord. Chem., 2018, 71:371-410 doi: 10.1080/00958972.2018.1439163
-
[4]
Zheng X D, Lu T B. CrystEngComm, 2010, 12:324-336 doi: 10.1039/B911991D
-
[5]
Gu J Z, Wen M, Cai Y, et al. Inorg. Chem., 2019, 58:2403-2412 doi: 10.1021/acs.inorgchem.8b02926
-
[6]
Chen Q, Xue W, Lin J B, et al. Chem. Eur. J., 2016, 22:12088-12094 doi: 10.1002/chem.201601826
-
[7]
Dey A, Garai A, Gude V, et al. Cryst. Growth Des., 2018, 18:6070-6077 doi: 10.1021/acs.cgd.8b00924
-
[8]
Zhao X, Wang Y X, Li D S, et al. Adv. Mater., 2018, 30:1705189 doi: 10.1002/adma.201705189
-
[9]
Pal S, Pal T K, Bharadwaj P K. CrystEngComm, 2016, 18:1825-1831 doi: 10.1039/C5CE02540K
-
[10]
Zhang L N, Zhang C, Zhang B, et al. CrystEngComm, 2015, 17:2837-2846 doi: 10.1039/C5CE00263J
-
[11]
Gu J Z, Gao Z Q, T ang Y. Cryst. Growth Des., 2012, 12:3312-3323 doi: 10.1021/cg300442b
-
[12]
Du M, Li C P, Liu C S, et al. Coord. Chem. Soc., 2013, 257:1282-1305 doi: 10.1016/j.ccr.2012.10.002
-
[13]
Gu J Z, Cui Y H, Liang X X, et al. Cryst. Growth Des., 2016, 16:4658-4670 doi: 10.1021/acs.cgd.6b00735
-
[14]
邹训重, 吴疆, 顾金忠, 等.无机化学学报, 2019, 35(9):1705-1711 http://www.cqvip.com/QK/93659X/20186/675513975.htmlZOU Xun-Zhong, WU Jiang, GU Jin-Zhong, et al. Chinese J. Inorg. Chem., 2019, 35(9):1705-1711 http://www.cqvip.com/QK/93659X/20186/675513975.html
-
[15]
Gu J Z, Cai Y, Qian Z Y, et al. Dalton Trans., 2018, 47:7431-7444 doi: 10.1039/C8DT01299G
-
[16]
Peng Y W, Wu R J, Liu M, et al. Cryst. Growth Des., 2019, 19:1322-1328 doi: 10.1021/acs.cgd.8b01709
-
[17]
顾文君, 顾金忠.无机化学学报, 2017, 33(2):227-236 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201702004.htmGU Wen-Jun, GU Jin-Zhong. Chinese J. Inorg. Chem., 2017, 33(2):227-236 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201702004.htm
-
[18]
赵素琴, 顾金忠.无机化学学报, 2016, 32(9):1611-1618 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201605016.htmZHAO Su-Qin, GU Jin-Zhong. Chinese J. Inorg. Chem., 2016, 32(9):1611-1618 http://www.cnki.com.cn/Article/CJFDTotal-WJHX201605016.htm
-
[19]
Gu J Z, Wen M, Liang X X. Crystals, 2018, 8:83 doi: 10.3390/cryst8020083
-
[20]
You L X, Wang S J, Xiong G, et al. Dalton Trans., 2014, 43:17385-17394 doi: 10.1039/C4DT02517B
-
[21]
Spek A L. Acta Crystallogr. Sect. C:Struct. Chem., 2015, C71:9-18 http://www.ncbi.nlm.nih.gov/pubmed/25567569
-
[22]
Van de Sluis P, Spek A L. Acta Crystallogr. Sect. A:Found. Crystallogr., 1990, A46:194-201 http://www.researchgate.net/publication/244638370_Structure_of_calcium_acetate_monohydrate_Ca(C2H3O2)2.H2O?ev=prf_cit
-
[23]
Gu J Z, Cai Y, Wen M, Dalton Trans., 2018, 47:14327-14339 doi: 10.1039/C8DT02467G
-
[24]
Banerjee A, Mahata P, Natarajan S. Eur. J. Inorg. Chem., 2008:3501-3514 http://www.researchgate.net/publication/43075750_The_Use_of_Liquid-Liquid_Interface_Biphasic_for_the_Preparation_of_Benzenetricarboxylate_Complexes_of_Cobalt_and_Nickel
-
[25]
Su F, Lu L P, Feng S S, et al. Dalton Trans., 2015, 44:7213-7222 doi: 10.1039/C5DT00412H
-
[26]
Xie F T, Duan L M, Xu J Q, et al. Eur. J. Inorg. Chem., 2004:4375-4379 http://www.researchgate.net/publication/243895469_One_and_Three-Dimensional_Coordination_Polymers_Containing_Organic_Ligands_Produced_Through_in_situ_Hydrothermal_Reactions
-
[27]
Mukherjee P S, Konar S, Zangrando E, et al. Inorg. Chem., 2003, 42:2695-2703 doi: 10.1021/ic026150n
-
[28]
Du M, Bu X H, Guo Y M, et al. Chem. Commun., 2002:1478-1479 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM12230394
-
[1]
-
Table 1. Crystal data for compounds 1 and 2
Compound 1 2 Chemical formula C51H39Cd2N7O13 C51H39Ni2N7O13 Molecular weight 1 182.72 1 075.31 Crystal system Orthorhombic Orthorhombic Space group Pbca Pbca a/nm 1.845 88(7) 1.809 05(5) b/nm 1.691 95(6) 1.676 82(4) c/nm 3.012 97(11) 3.016 46(8) V/nm3 9.409 9(6) 9.150 3(4) Z 8 8 F(000) 4 512 4 272 θ range for data collection/(°) 3.336~25.049 3.816~ 69.987 Limiting indices -12 ≤ h ≤ 21, -19 ≤ k ≤ 20, -35 ≤ l ≤ 35 -20 ≤ h ≤ 21, -20 ≤ k ≤ 13, -36 ≤ l ≤ 36 Reflection collected, unique (Rint) 35 201, 8 304 (0.087 9) 36 483, 8 579 (0.099 0) Dc/(g·cm-3) 1.593 1.509 μ/mm-1 0.972 1.633 Data, restraint, parameter 8 304, 0, 631 8 579, 0, 640 Goodness-of-fit on F2 1.142 1.054 Final R indices [I≥2σ(I)] R1, wR2 0.05 63, 0.097 6 0.075 3, 0.157 5 R indices (all data) R1, wR2 0.078 1, 0.092 4 0.125 2, 0.183 5 Largest diff. peak and hole/(e·nm-3) 1 079 and -464 359 and -666 Table 2. Selected bond distances (nm) and bond angles (°) for compounds 1 and 2
1 Cd(1)-O(1) 0.243 6(4) Cd(1)-O(3) 0.232 7(4) Cd(1)-O(8)A 0.220 6(4) Cd(1)-N(1) 0.228 7(4) Cd(1)-N(2) 0.232 7(5) Cd(1)-N(3) 0.238 6(5) Cd(2)-O(2) 0.226 4(4) Cd(2)-O(5) 0.227 4(4) Cd(2)-N(4) 0.234 3(5) Cd(2)-N(5) 0.235 8(5) Cd(2)-N(6) 0.229 4(5) Cd(2)-N(7) 0.239 4(5) O(8)A-Cd(1)-N(1) 104.30(15) O(8)A-Cd(1)-N(2) 148.44(18) N(1)-Cd(1)-N(2) 103.70(18) O(8)A-Cd(1)-O(3) 105.04(15) N(1)-Cd(1)-O(3) 71.99(15) N(2)-Cd(1)-O(3) 97.21(17) O(8)A-Cd(1)-N(3) 81.51(16) N(1)-Cd(1)-N(3) 173.90(17) N(2)-Cd(1)-N(3) 70.21(19) O(3)-Cd(1)-N(3) 108.59(16) O(8)A-Cd(1)-O(1) 92.88(15) N(1)-Cd(1)-O(1) 67.87(15) N(2)-Cd(1)-O(1) 84.41(16) O(3)-Cd(1)-O(1) 138.96(14) N(3)-Cd(1)-O(1) 110.42(15) O(2)-Cd(2)-O(5) 86.00(15) O(2)-Cd(2)-N(6) 102.27(16) O(5)-Cd(2)-N(6) 90.42(18) O(2)-Cd(2)-N(4) 92.71(16) O(5)-Cd(2)-N(4) 105.03(16) N(6)-Cd(2)-N(4) 159.25(18) O(2)-Cd(2)-N(5) 161.74(15) O(5)-Cd(2)-N(5) 89.59(17) N(6)-Cd(2)-N(5) 95.46(18) N(4)-Cd(2)-N(5) 71.34(18) O(2)-Cd(2)-N(7) 98.13(15) O(5)-Cd(2)-N(7) 161.38(17) N(6)-Cd(2)-N(7) 71.0(2) N(4)-Cd(2)-N(7) 92.95(18) N(5)-Cd(2)-N(7) 91.68(16) 2 Ni(1)-O(1) 0.210 0(4) Ni(1)-O(5) 0.204 0(3) Ni(1)-N(2) 0.212 4(4) Ni(1)-N(3) 0.213 3(4) Ni(1)-N(4) 0.217 0(4) Ni(1)-N(5) 0.213 1(4) Ni(2)-O(4)A 0.203 2(4) Ni(2)-O(6) 0.215 4(3) Ni(2)-O(7) 0.214 7(4) Ni(2)-N(1) 0.205 8(4) Ni(2)-N(6) 0.213 6(5) Ni(2)-N(7) 0.214 8(5) O(5)-Ni(1)-O(1) 86.47(15) O(5)-Ni(1)-N(2) 88.73(15) O(1)-Ni(1)-N(2) 102.10(16) O(5)-Ni(1)-N(5) 98.26(16) O(1)-Ni(1)-N(5) 88.49(16) N(2)-Ni(1)-N(5) 167.69(17) N(3)-Ni(1)-O(5) 163.93(15) O(1)-Ni(1)-N(3) 88.01(16) N(3)-Ni(1)-N(2) 77.69(17) N(5)-Ni(1)-N(3) 96.67(17) N(4)-Ni(1)-O(5) 96.27(15) O(1)-Ni(1)-N(4) 165.73(16) N(2)-Ni(1)-N(4) 91.98(17) N(5)-Ni(1)-N(4) 77.25(17) N(4)-Ni(1)-N(3) 92.78(16) O(4)A-Ni(2)-N(1) 97.75(15) O(4)A-Ni(2)-N(6) 160.40(17) N(1)-Ni(2)-N(6) 99.69(17) O(4)A-Ni(2)-O(7) 100.94(15) N(1)-Ni(2)-O(7) 76.07(15) N(6)-Ni(2)-O(7) 91.90(16) O(4)A-Ni(2)-N(7) 86.65(16) N(1)-Ni(2)-N(7) 175.53(17) N(6)-Ni(2)-N(7) 76.09(18) N(7)-Ni(2)-O(7) 102.40(15) O(6)-Ni(2)-O(4)A 92.34(14) N(1)-Ni(2)-O(6) 74.99(14) N(6)-Ni(2)-O(6) 83.65(16) O(7)-Ni(2)-O(6) 149.48(14) N(7)-Ni(2)-O(6) 105.72(15) Symmetry codes: A: -x+1, y-1/2, -z+3/2 for 1; A: -x+1, y+1/2, -z+1/2 for 2. Table 3. Hydrogen bond parameters of compound 1
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°) O(9)-H(1W)…O(7) 0.085 0.188 2 0.273 1 178.6 O(9)-H(2W)…O(2)A 0.085 0.212 7 0.297 7 179.4 O(10)-H(3W)…O(6) 0.085 0.203 8 0.288 8 179.7 O(10)-H(4W)…O(4)B 0.085 0.200 4 0.285 4 179.3 Symmetry codes: A: -x+1, y+1/2, -z+3/2; B: -x+1/2, y+1/2, z. Table 4. Hydrogen bond parameters of compound 2
D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°) O(9)-H(1W)…O(3)A 0.085 0.19 54 0.280 4 178.8 O(9)-H(2W)…O(11)B 0.085 0.203 5 0.288 5 179.5 O(10)-H(3W)…O(8) 0.085 0.200 1 0.285 1 178.9 O(10)-H(4W)…O(2)B 0.085 0.220 8 0.305 8 179.0 O(11)-H(5W)…O(8) 0.085 0.201 9 0.286 9 179.0 O(11)-H(6W)…O(2)B 0.085 0.211 5 0.296 5 179.3 Symmetry codes: A: x, y+1, z; B: -x+1/2, y+1/2, z. -

计量
- PDF下载量: 3
- 文章访问数: 320
- HTML全文浏览量: 29