Syntheses and Crystal Structures of Two Discrete Complexes Generated from 3, 6-Bis(2-(4-oxide-quinoxaline)-yl)-4, 5-diaza-3, 5-octadiene and Ag(Ⅰ) Salt

Xiu-Hui REN Peng WANG Jian SU Jun-Yan CHENG

Citation:  REN Xiu-Hui, WANG Peng, SU Jian, CHENG Jun-Yan. Syntheses and Crystal Structures of Two Discrete Complexes Generated from 3, 6-Bis(2-(4-oxide-quinoxaline)-yl)-4, 5-diaza-3, 5-octadiene and Ag(Ⅰ) Salt[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1436-1444. doi: 10.11862/CJIC.2019.174 shu

基于3,6-二(2-(4-氧化苯并吡嗪基))-4,5-二氮杂-3,5-辛二烯配体的两个离散型Ag(Ⅰ)配合物的合成与晶体结构

    通讯作者: 王鹏, pengwang@sdust.edu.cn
    程军妍, chengjunyan@sdnu.edu.cn
  • 基金项目:

    国家自然科学基金 21671122

    国家自然科学基金 21475078

    国家自然科学基金(No.21671122,21475078)和泰山学者资助项目

摘要: 3,6-二(2-(4-氧化苯并吡嗪基))-4,5-二氮杂-3,5-辛二烯配体(L)与银盐室温下反应得到了2个结构新颖的离散型配位化合物[Ag8(L)8](BF48·CH2Cl2·3CH3OH(1)和[Ag4(L)4](PF64·CH2Cl22)。通过红外、元素分析、X射线单晶衍射等检测手段对所得配合物进行了表征。结果表明,2个配合物皆以二聚体的形式存在。未配位的平衡阴离子与二聚体通过氢键连接成一维或二维结构。

English

  • Due to their novel structural topologies and potential applications in gas storage[1-2], adsorption and separation[3-4], luminescence[5-7], catalysis[8-10] and magnetic properties[11], pronounced interest has been focused on new discrete compounds and coordination polymers based on polydentate organic ligands. Of all factors in the process of constructing coordination compounds, such as coordination orientation of metal ions, counter- anions, template effect of solvent, the most important is the coordination ability, length, geometry and conformation of the organic ligands[12]. Therefore, for a long time, a variety of organic ligands have been synthesized and used as building blocks to construct CPs with novel topological structures. One of continuing project in our laboratory has been the development of organometallic coordination compounds generated from double Schiff-base ligands with pyridine, pyrazine, and quinoxaline diazene as the terminal binding groups[13]. Our previous research demonstrated that such types of ligands were very useful to construct novel polymeric and discrete complexes due to their zigzag conformation of the spacer moiety (-RC=N-N=CR-) between two terminal coordination groups[14]. Moreover, Ag(Ⅰ), as a soft Lewis acid, may adopt various coordination modes such as linear, trigonal planar, trigonal pyramidal, and tetrahedral coordination geometries[15]. In this context, we design a double Schiff-base ligand, 3, 6-bis(2- (4-oxide-quinoxaline)-yl)-4, 5-diaza-3, 5-octadiene (L) (Scheme 1)[15]. More novel coordination compounds may be obtained with the quinoxaline-N-oxide as the terminal binding groups. Additionally, the O atoms of quinoxaline-N-oxide can serve as potential binding sites and H-bond acceptors forming hydrogen bonds with solvent molecules. In this paper, based on this novel functional ligand, two silver complexes, [Ag8(L)8](BF4)8·CH2Cl2·3CH3OH (1) and [Ag4(L)4](PF6)4·CH2Cl2 (2), are successfully synthesized and the crystal structures are determined. As reported in other articles[16], the complex hydrogen bonding systems exist in the above two complexes.

    Scheme 1

    Scheme 1.  Schiff-base ligand used in the construction of coordination compounds

    AgBF4 and AgPF6 (Acros) were purchased and used as obtained without further purification. The ligand L was synthesized according to the literature[15]. Infrared (IR) samples were prepared as KBr pellets, and spectra were obtained in the 400~4 000 cm-1 range using a Perkin-Elmer 1600 FT-IR spectrometer. Elemental analyses were performed on a Perkin-Elmer model 2400 analyzer.

    A solution of AgBF4 (23.1 mg, 0.12 mmol) in CH3OH (8 mL) was slowly diffused into a solution of L (12.0 mg, 0.03 mmol) in CH2Cl2 (8 mL). Yellow crystals are formed in about 7 days in 50.7% yield (based on AgBF4). Anal. Calcd. for C180H174B8N48O19F32 Ag8Cl2(%): C, 43.70; H, 3.52; N, 13.60. Found(%): C, 43.26; H, 3.45; N, 13.79. IR (KBr pellet, cm-1): 3 449 (s), 1 636 (m), 1 575 (w), 1 524 (w), 1 490 (w), 1 457 (w), 1 401 (s), 1 249 (w), 1 218 (w), 1 085 (m), 910 (w), 856 (w), 771 (w), 625 (w).

    A solution of AgPF6 (30.3 mg, 0.12 mmol) in CH3OH (8 mL) was slowly diffused into a solution of L (12.0 mg, 0.03 mmol) in CH2Cl2 (8 mL). Yellow crystals were formed in about 7 days in 24.3% yield (based on AgPF6). Anal. Calcd. for C89H82N24O8F24P4 Ag4Cl2(%): C, 39.58; H, 3.04; N, 12.45. Found(%): C, 38.65; H, 3.15; N, 11.61. IR (KBr pellet, cm-1): 3 417 (s), 3 120 (w), 1 638 (m), 1 617 (m), 1 578 (m), 1 522 (w), 1 492 (m), 1 459 (w), 1 400 (s), 1 375 (s), 1 277 (w), 1 250 (w), 1 216 (w), 1 136 (w), 1 098 (w), 1 050 (w), 982 (w), 942 (w), 910 (w), 838 (s), 771 (m), 557 (m).

    Suitable single crystals of 1 and 2 were selected and mounted in air onto thin glass fibers. X-ray intensity data were measured at 298(2) K on a Bruker SMART APEX CCD-based diffractometer (Mo radiation, λ=0.071 073 nm). The raw frame data for 1 and 2 were integrated into SHELX-format reflection files and corrected for Lorentz and polarization effects using SAINT[17]. Corrections for incident and diffracted beam adsorption effects were applied using SADABS[18]. None of the crystals showed evidence of crystal decay during data collection. The structures were solved by a combination of direct methods and difference Fourier syntheses and structural analysis refined against F2 by the full-matrix least squares technique. Crystallographic data for 1 and 2 are listed in Table 1. Selected bond lengths and bond angles are listed in Table 2. Hydrogen bond lengths and bond angles are listed in Table 3.

    Table 1

    Table 1.  Crystallographic data for 1 and 2
    下载: 导出CSV
    Complex 1 2
    Formula C180H174B8N48O19F32Ag8Cl2 C89H82N24O8F24P4Ag4Cl2
    Formula weight 4 942.01 2 698.05
    Crystal system Orthorhombic Triclinic
    Space group Pbca P1
    a / nm 1.501 40(1) 1.535 4(4)
    b / nm 1.835 08(1) 1.930 6(5)
    c / nm 3.679 0(1) 2.040 6(6)
    α / (°) 104.926(4)
    β / (°) 99.426(4)
    γ / (°) 98.671(4)
    V / nm3 10.136 3(2) 5.647(3)
    Z 2 2
    D / (g·cm-3) 1.619 1.587
    μ(Mo ) / mm-1 0.885 0.888
    F(000) 4 960 2 692
    GOF on F2 1.044 0.973
    R1a, wR2b [I>2σ(I)] 0.061 5, 0.174 6 0.060 4, 0.154 4
    R1, wR2 (all data) 0.108 7, 0.198 1 0.100 6, 0.170 6
    Largest difference peak and hole / (e·nm-3) 960 and -1 070 1 770 and -1 230
    a R1=∑||Fo|-|Fc||/∑|Fo|; b wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2.

    Table 2

    Table 2.  Selected bond lengths (nm) and bond angles (°) of complexes 1 and 2
    下载: 导出CSV
    1
    Ag(1)-N(10) 0.242 3(5) Ag(1)-N(3) 0.242 7(5) Ag(2)-N(5) 0.224 6(5)
    Ag(1)-N(1) 0.223 6(5) Ag(2)-N(4) 0.243 4(5) Ag(2)-N(7) 0.222 4(5)
    Ag(1)-N(11) 0.224 4(5) Ag(2)-N(9) 0.239 6(5)
    N(1)-Ag(1)-N(11) 158.6(17) N(1)-Ag(1)-N(10) 127.9(17) N(1)-Ag(1)-N(3) 69.68(17)
    N(10)-Ag(1)-N(3) 96.4(16) N(11)-Ag(1)-N(10) 69.5(16) N(11)-Ag(1)-N(3) 125.1(17)
    N(5)-Ag(2)-N(4) 69.4(17) N(5)-Ag(2)-N(9) 127.9(18) N(7)-Ag(2)-N(4) 134.4(18)
    N(7)-Ag(2)-N(5) 152.4(18) N(7)-Ag(2)-N(9) 69.9(17) N(9)-Ag(2)-N(4) 97.6(17)
    2
    Ag(1)-N(11) 0.223 7(4) Ag(1)-N(1) 0.226 4(4) Ag(1)-N(3) 0.237 3(4)
    Ag(1)-N(10) 0.247 3(4) Ag(2)-N(5) 0.220 8(5) Ag(2)-N(7) 0.222 3(5)
    Ag(2)-N(4) 0.237 4(5) Ag(2)-N(9) 0.239 8(5) Ag(3)-N(23) 0.228 4(5)
    Ag(3)-N(13) 0.222 3(4) Ag(3)-N(15) 0.241 5(5) Ag(3)-N(22) 0.236 9(4)
    Ag(4)-N(17) 0.224 8(5) Ag(4)-N(19) 0.225 2(5) Ag(4)-N(16) 0.239 4(5)
    Ag(4)-N(21) 0.235 3(5)
    N(11)-Ag(1)-N(1) 148.98(16) N(11)-Ag(1)-N(3) 129.24(14) N(1)-Ag(1)-N(3) 68.71(15)
    N(11)-Ag(1)-N(10) 69.13(16) N(1)-Ag(1)-N(10) 138.76(15) N(3)-Ag(1)-N(10) 99.54(15)
    N(5)-Ag(2)-N(7) 147.89(17) N(5)-Ag(2)-N(4) 70.95(16) N(7)-Ag(2)-N(4) 137.19(15)
    N(5)-Ag(2)-N(9) 129.72(15) N(7)-Ag(2)-N(9) 69.25(16) N(4)-Ag(2)-N(9) 100.02(15)
    N(23)-Ag(3)-N(13) 139.91(17) N(23)-Ag(3)-N(15) 124.90(17) N(13)-Ag(3)-N(15) 70.09(17)
    N(23)-Ag(3)-N(22) 71.28(17) N(13)-Ag(3)-N(22) 146.62(17) N(15)-Ag(3)-N(22) 103.97(15)
    N(17)-Ag(4)-N(19) 134.95(19) N(17)-Ag(4)-N(16) 70.44(16) N(19)-Ag(4)-N(16) 149.63(18)
    N(17)-Ag(4)-N(21) 131.3(2) N(19)-Ag(4)-N(21) 70.20(18) N(16)-Ag(4)-N(21) 107.35(16)

    Table 3

    Table 3.  Structural parameters of hydrogen bonds for complexes 1 and 2
    下载: 导出CSV
    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1
    C(24)-H(24) …O(1) 0.093 0.257 0.330 5(9) 136.0
    C(2)-H(2)…O(2) 0.093 0.230 0.311 4(8) 146.4
    C(43)-H(43)…O(4) 0.093 0.254 0.331 6(9) 141.5
    C(35)-H(35A)…F(3) 0.097 0.260 0.348 3(10) 150.0
    C(11)-H(11F)…F(5) 0.096 0.262 0.328 9(10) 125.1
    2
    C(5)-H(5)…O(1) 0.093 0.237 0.319 146
    C(76)-H(76A)…O(2) 0.097 0.245 0.339 162
    C(73)-H(73)…O(2) 0.093 0.244 0.328 151
    C(51)-H(51)…O(3) 0.093 0.262 0.350 158
    C(7)-H(7)…O(5) 0.093 0.249 0.335 154
    C(10)-H(10B)…O(5) 0.097 0.292 0.366 134
    C(55)-H(55A)…O(6) 0.096 0.277 0.353 137
    C(57)-H(57A)…O(6) 0.097 0.294 0.364 130
    C(24)-H(24A)…O(7) 0.097 0.269 0.347 138
    C(27)-H(27)…O(7) 0.093 0.261 0.340 143
    C(82)-H(82)…O(8) 0.093 0.265 0.336 134
    C(79)-H(79B)…O(8) 0.097 0.230 0.315 146
    C(44)-H(44C)…F(23) 0.096 0.246 0.324 139
    C(86)-H(86)…F(24) 0.093 0.279 0.348 131
    C(10)-H(10B)…F(21) 0.097 0.266 0.343 137
    C(55)-H(55C)…F(21) 0.096 0.287 0.376 156
    C(87)-H(87)…F(22) 0.093 0.249 0.335 153
    C(57)-H(57B)…F(22) 0.097 0.272 0.364 160
    C(77)-H(77C)…F(14) 0.096 0.245 0.335 155
    C(14)-H(14)…F(16) 0.093 0.251 0.341 161
    C(68)-H(68)…F(13) 0.093 0.286 0.370 151
    C(23)-H(23C)…F(5)ⅹⅰ 0.096 0.276 0.367 158
    C(23)-H(23C)…F(3)ⅹⅰ 0.096 0.253 0.336 145
    C(21)-H(21A)···F(1)ⅹⅰ 0.097 0.274 0.364 154
    C(10)-H(10A)…F(7) 0.097 0.239 0.327 150
    C(76)-H(76B)…F(12)ⅹⅱ 0.097 0.287 0.355 164
    C(78)-H(78C)…F(12)ⅹⅱ 0.096 0.260 0.359 133
    C(65)-H(65)…F(6)ⅹⅲ 0.093 0.251 0.324 135
    C(79)-H(79A)…F(6)ⅹⅲ 0.097 0.250 0.335 147
    C(37)-H(37)…F(16)ⅹⅳ 0.093 0.270 0.348 142
    C(43)-H(43A)…F(18)ⅹⅴ 0.097 0.257 0.333 136
    C(77)-H(77C)…F(18)ⅹⅴ 0.096 0.266 0.339 133
    C(14)-H(14)…F(17)ⅹⅵ 0.093 0.258 0.326 130
    C(69)-H(69)…F(15)ⅹⅶ 0.093 0.248 0.327 142
    C(76)-H(76B)…F(8) 0.097 0.268 0.349 141
    C(46)-H(46)…F(8) 0.093 0.260 0.346 153
    Symmetry codes: x+1/2, y, -z+3/2; x-1, y, z for 1; -x, 1-y, 1-z; 1-x, 2-y, 1-z; -1+x, -1+y, z; 2-x, 2-y, -z; ⅹⅰ -1+x, y, z; ⅹⅱ 1-x, 1-y, -z; ⅹⅲ x, 1+y, z; ⅹⅳ 1-x, 1-y, -z; ⅹⅴ -1+x, y, z; ⅹⅵ 1-x, 1-y, 1-z; ⅹⅶ 2-x, 2-y, 1-z for 2.

    CCDC:1838857, 1; 1838858, 2.

    Complex 1 was obtained as yellow crystals in CH2Cl2/CH3OH mixed solvent system using combination of L and AgBF4 (metal-to-ligand molar ratio 4:1) at room temperature. The X-ray single-crystal analysis reveals that 1 crystallizes in the orthorhombic space group Pbca and exists as a dimer. Complex 1 possesses a dinuclear chiral double-helical structure with the Ag…Ag distance of 0.439 6 nm. As indicated in Fig. 1, the asymmetric unit contains two crystallo-graphic Ag(Ⅰ) centers, two L ligands, two BF4- anions, a quarter CH2Cl2, and 0.75 CH3OH molecule. Each Ag(Ⅰ) center lies in a distorted tetrahedral coordination environment defined by two quinoxaline N-donors and two Schiff-base N-donors from two quadridentate ligands, respectively. The dihedral angle between two terminal benzene rings is 79.94°. BF4- anions are bonded to the [Ag2L2]2+ unit through weak F…H-C bonds (F(3)…H(35A)-C(35), F(3)…H(35A) 0.260 nm, F(5)…H(11F)-C(11′), F(5)…H(11F) 0.262 nm, Fig. 2). In the solid state, through three sets of hydrogen-bonding systems, the dinuclear subunits are linked together to give one-dimensional helical chains extending along the crystallographic c axis, which arrange in the crystallographic bc plane in parallel (Fig. 3).

    Figure 1

    Figure 1.  ORTEP figure (left) and space-filling model (right) of 1

    Probability of displacement ellipsoids: 30%; Two strands are colored as red and blue, respectively

    Figure 2

    Figure 2.  Hydrogen-bonds (dotted lines) between BF4- anions and [Ag2L2]2+ unit

    Symmetry codes: ⅱ x-1, y, z

    Figure 3

    Figure 3.  One-dimensional helical chains of 1 (left) and crystal packing of 1 (right)

    Hydrogen bonds are shown as orange and blue dotted lines; Symmetry codes: x+1/2, y, -z+3/2; 1+x, y, z; x+1/2, y, -z+3/2; -x+1/2, -y+2, -z+1/2; -x, -y+2, -z+1; -x+1, -y+2, -z+1

    The reaction of L with AgPF6 in methanol/methylene chloride at room temperature afforded discrete complex 2 in 24.3% yield. Single-crystal analysis reveals that complex 2 contains four types of crystallographic independent Ag(Ⅰ) ions (Fig. 4). Each Ag(Ⅰ) ion is four-coordinated in an approximately tetrahedral coordination environment, which is defined by two quinoxaline N-donors and two Schiff-base N-donors from two quadridentate ligands. The Ag-N bond distances are in a range of 0.220 8(5)~0.247 3(4) nm, all of which are within the range of those reported for other Ag(Ⅰ) complexes with N donors[19]. The dihedral angles between two terminal benzene rings are 60° and 75°, respectively. Additionally, the complex features diverse non-clsssical hydrogen bonding interactions (Fig. 5). PF6- anions are bonded to the [Ag2L2]2+ units through weak F…H-C bonds (Table 3). As shown in Fig. 6, the dinuclear subunits are linked together into a two-dimensional net extending in the crystallographic bc plane through complicated hydrogen-bonding systems. These networks stack in an -ABAB- sequence along the crystallographic a axis (Fig. 7).

    Figure 4

    Figure 4.  ORTEP figure (top) and space-filling model (below) of 2

    Probability of displacement ellipsoids: 30%; Four strands are colored as green, yellow, red and blue respectively

    Figure 5

    Figure 5.  Hydrogen-bonding systems between PF6- anions and [Ag2L2]2+ unit

    Hydrogen bonds are shown as blue dotted lines; Symmetry codes: ⅹⅰ -1+x, y, z; ⅹⅱ 1-x, 1-y, -z; ⅹⅲ x, 1+y, z; ⅹⅳ 1-x, 1-y, -z; ⅹⅴ -1+x, y, z; ⅹⅵ 1-x, 1-y, 1-z; ⅹⅶ 2-x, 2-y, 1-z

    Figure 6

    Figure 6.  Two dimensional hydrogen-bonded nets found in 2

    Hydrogen bonds are shown as blue dotted lines; Symmetry codes: -x, 1-y, 1-z; 1-x, 2-y, 1-z; -1+x, -1+y, z; 2-x, 2-y, -z

    Figure 7

    Figure 7.  Two dimensional nets stack parallel to crystallographic ab plane

    Symmetry codes: ⅹⅷ 1-x, 1-y, 1-z; ⅹⅸ -x, 1-y, 1-z; ⅹⅹ 1-x, 2-y, 1-z; ⅹⅹⅰ 1+x, y, z; ⅹⅹⅱ x, -1+y, z

    In summary, a double Schiff-base ligand, namely 3, 6-bis(2-(4-oxide-quinoxaline)-yl)-4, 5-diaza-3, 5-octad-iene (L), was used as a polydentate ligand to coordinate with transition metal ions. Two novel discrete complexes with Ag(Ⅰ) centers have been synthesized and structurally characterized. Both complexes exist as dimers and the frameworks were formed via hydrogen bonding interactions between uncoordinated counter ions and the discrete building blocks. Further investigations on supramolecular compounds based on the double Schiff-base ligand with new structures and multifunctional properties are ongoing in our group.

    1. [1]

      Xie Z G, Ma L Q, Lin W B, et al. J. Am. Chem. Soc., 2010, 132:922-923 doi: 10.1021/ja909629f

    2. [2]

      Myunghyun P, Hye J P, Thazhe K, et al. Chem. Rev., 2012, 112:782-835 doi: 10.1021/cr200274s

    3. [3]

      Liu Q K, Ma J P, Dong Y B. J. Am. Chem. Soc., 2010, 132:7005-7017 doi: 10.1021/ja101807c

    4. [4]

      Li J R, Julian S, Zhou H C. Chem. Rev., 2012, 112:869-932 doi: 10.1021/cr200190s

    5. [5]

      Wang M S, Guo S P, Li Y, et al. J. Am. Chem. Soc., 2009, 131:13572-13573 doi: 10.1021/ja903947b

    6. [6]

      Cui Y J, Yue Y F, Chen B L, et al. Chem. Rev., 2012, 112:1126-1162 doi: 10.1021/cr200101d

    7. [7]

      Ren X H, Wang P, Cheng J Y, et al. J. Mol. Struct., 2018, 1161:145-151 doi: 10.1016/j.molstruc.2018.02.039

    8. [8]

      Zhao C W, Ma J P, Dong Y B, et al. Green Chem., 2013, 15:3150-3154 doi: 10.1039/c3gc41154k

    9. [9]

      Cheng J Y, Ding F W, Dong Y B, et al. ChemPlusChem, 2016, 81:743-751 doi: 10.1002/cplu.201600009

    10. [10]

      Minyoung Y, Renganathan S, Kimoon K. Chem. Rev., 2012, 112:1196-1231 doi: 10.1021/cr2003147

    11. [11]

      Zhang W, Xiong R G. Chem. Rev., 2012, 112:1163-1195 doi: 10.1021/cr200174w

    12. [12]

      Cook T R, Zheng Y R, Stang P J. Chem. Rev., 2013, 113:734-777 doi: 10.1021/cr3002824

    13. [13]

      Dong Y B, Wang L, Ma J P, et al. Cryst. Growth Des., 2006, 6:2475-2485 doi: 10.1021/cg060158g

    14. [14]

      Dong Y B, Cheng J Y, Ma J P, et al. Cryst. Growth Des., 2005, 5:585-591 doi: 10.1021/cg049806r

    15. [15]

      Cheng J Y, Wang P, Dong Y B, et al. Chem. Commun., 2014, 50:13672-13675 doi: 10.1039/C4CC03204G

    16. [16]

      余沁, 王大鹏, 王海英, 等.无机化学学报, 2017, 33(12):2345-2350 doi: 10.11862/CJIC.2017.261YU Qin, WANG Da-Peng, WANG Hai-Ying, et al. Chinese J. Inorg. Chem., 2017, 33(12):2345-2350 doi: 10.11862/CJIC.2017.261

    17. [17]

      (a) Sheldrick G M. SHLXTL Ver. 5.1, Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997. (b)SMART Ver. 5.625 and SAINT+ Ver. 6.02a, Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1998.

    18. [18]

      Sheldrick G M. SADABS, University of Göttingen, Germany, 1996.

    19. [19]

      倪天军, 苑强涛, 张伟, 等.无机化学学报, 2017, 33(12):2177-2185 doi: 10.11862/CJIC.2017.269NI Tian-Jun, YUAN Qiang-Tao, ZHANG Wei, et al. Chinese J. Inorg. Chem., 2017, 33(12):2177-2185 doi: 10.11862/CJIC.2017.269

  • Scheme 1  Schiff-base ligand used in the construction of coordination compounds

    Figure 1  ORTEP figure (left) and space-filling model (right) of 1

    Probability of displacement ellipsoids: 30%; Two strands are colored as red and blue, respectively

    Figure 2  Hydrogen-bonds (dotted lines) between BF4- anions and [Ag2L2]2+ unit

    Symmetry codes: ⅱ x-1, y, z

    Figure 3  One-dimensional helical chains of 1 (left) and crystal packing of 1 (right)

    Hydrogen bonds are shown as orange and blue dotted lines; Symmetry codes: x+1/2, y, -z+3/2; 1+x, y, z; x+1/2, y, -z+3/2; -x+1/2, -y+2, -z+1/2; -x, -y+2, -z+1; -x+1, -y+2, -z+1

    Figure 4  ORTEP figure (top) and space-filling model (below) of 2

    Probability of displacement ellipsoids: 30%; Four strands are colored as green, yellow, red and blue respectively

    Figure 5  Hydrogen-bonding systems between PF6- anions and [Ag2L2]2+ unit

    Hydrogen bonds are shown as blue dotted lines; Symmetry codes: ⅹⅰ -1+x, y, z; ⅹⅱ 1-x, 1-y, -z; ⅹⅲ x, 1+y, z; ⅹⅳ 1-x, 1-y, -z; ⅹⅴ -1+x, y, z; ⅹⅵ 1-x, 1-y, 1-z; ⅹⅶ 2-x, 2-y, 1-z

    Figure 6  Two dimensional hydrogen-bonded nets found in 2

    Hydrogen bonds are shown as blue dotted lines; Symmetry codes: -x, 1-y, 1-z; 1-x, 2-y, 1-z; -1+x, -1+y, z; 2-x, 2-y, -z

    Figure 7  Two dimensional nets stack parallel to crystallographic ab plane

    Symmetry codes: ⅹⅷ 1-x, 1-y, 1-z; ⅹⅸ -x, 1-y, 1-z; ⅹⅹ 1-x, 2-y, 1-z; ⅹⅹⅰ 1+x, y, z; ⅹⅹⅱ x, -1+y, z

    Table 1.  Crystallographic data for 1 and 2

    Complex 1 2
    Formula C180H174B8N48O19F32Ag8Cl2 C89H82N24O8F24P4Ag4Cl2
    Formula weight 4 942.01 2 698.05
    Crystal system Orthorhombic Triclinic
    Space group Pbca P1
    a / nm 1.501 40(1) 1.535 4(4)
    b / nm 1.835 08(1) 1.930 6(5)
    c / nm 3.679 0(1) 2.040 6(6)
    α / (°) 104.926(4)
    β / (°) 99.426(4)
    γ / (°) 98.671(4)
    V / nm3 10.136 3(2) 5.647(3)
    Z 2 2
    D / (g·cm-3) 1.619 1.587
    μ(Mo ) / mm-1 0.885 0.888
    F(000) 4 960 2 692
    GOF on F2 1.044 0.973
    R1a, wR2b [I>2σ(I)] 0.061 5, 0.174 6 0.060 4, 0.154 4
    R1, wR2 (all data) 0.108 7, 0.198 1 0.100 6, 0.170 6
    Largest difference peak and hole / (e·nm-3) 960 and -1 070 1 770 and -1 230
    a R1=∑||Fo|-|Fc||/∑|Fo|; b wR2=[∑w(Fo2-Fc2)2/∑w(Fo2)2]1/2.
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and bond angles (°) of complexes 1 and 2

    1
    Ag(1)-N(10) 0.242 3(5) Ag(1)-N(3) 0.242 7(5) Ag(2)-N(5) 0.224 6(5)
    Ag(1)-N(1) 0.223 6(5) Ag(2)-N(4) 0.243 4(5) Ag(2)-N(7) 0.222 4(5)
    Ag(1)-N(11) 0.224 4(5) Ag(2)-N(9) 0.239 6(5)
    N(1)-Ag(1)-N(11) 158.6(17) N(1)-Ag(1)-N(10) 127.9(17) N(1)-Ag(1)-N(3) 69.68(17)
    N(10)-Ag(1)-N(3) 96.4(16) N(11)-Ag(1)-N(10) 69.5(16) N(11)-Ag(1)-N(3) 125.1(17)
    N(5)-Ag(2)-N(4) 69.4(17) N(5)-Ag(2)-N(9) 127.9(18) N(7)-Ag(2)-N(4) 134.4(18)
    N(7)-Ag(2)-N(5) 152.4(18) N(7)-Ag(2)-N(9) 69.9(17) N(9)-Ag(2)-N(4) 97.6(17)
    2
    Ag(1)-N(11) 0.223 7(4) Ag(1)-N(1) 0.226 4(4) Ag(1)-N(3) 0.237 3(4)
    Ag(1)-N(10) 0.247 3(4) Ag(2)-N(5) 0.220 8(5) Ag(2)-N(7) 0.222 3(5)
    Ag(2)-N(4) 0.237 4(5) Ag(2)-N(9) 0.239 8(5) Ag(3)-N(23) 0.228 4(5)
    Ag(3)-N(13) 0.222 3(4) Ag(3)-N(15) 0.241 5(5) Ag(3)-N(22) 0.236 9(4)
    Ag(4)-N(17) 0.224 8(5) Ag(4)-N(19) 0.225 2(5) Ag(4)-N(16) 0.239 4(5)
    Ag(4)-N(21) 0.235 3(5)
    N(11)-Ag(1)-N(1) 148.98(16) N(11)-Ag(1)-N(3) 129.24(14) N(1)-Ag(1)-N(3) 68.71(15)
    N(11)-Ag(1)-N(10) 69.13(16) N(1)-Ag(1)-N(10) 138.76(15) N(3)-Ag(1)-N(10) 99.54(15)
    N(5)-Ag(2)-N(7) 147.89(17) N(5)-Ag(2)-N(4) 70.95(16) N(7)-Ag(2)-N(4) 137.19(15)
    N(5)-Ag(2)-N(9) 129.72(15) N(7)-Ag(2)-N(9) 69.25(16) N(4)-Ag(2)-N(9) 100.02(15)
    N(23)-Ag(3)-N(13) 139.91(17) N(23)-Ag(3)-N(15) 124.90(17) N(13)-Ag(3)-N(15) 70.09(17)
    N(23)-Ag(3)-N(22) 71.28(17) N(13)-Ag(3)-N(22) 146.62(17) N(15)-Ag(3)-N(22) 103.97(15)
    N(17)-Ag(4)-N(19) 134.95(19) N(17)-Ag(4)-N(16) 70.44(16) N(19)-Ag(4)-N(16) 149.63(18)
    N(17)-Ag(4)-N(21) 131.3(2) N(19)-Ag(4)-N(21) 70.20(18) N(16)-Ag(4)-N(21) 107.35(16)
    下载: 导出CSV

    Table 3.  Structural parameters of hydrogen bonds for complexes 1 and 2

    D-H…A d(D-H) / nm d(H…A) / nm d(D…A) / nm ∠DHA / (°)
    1
    C(24)-H(24) …O(1) 0.093 0.257 0.330 5(9) 136.0
    C(2)-H(2)…O(2) 0.093 0.230 0.311 4(8) 146.4
    C(43)-H(43)…O(4) 0.093 0.254 0.331 6(9) 141.5
    C(35)-H(35A)…F(3) 0.097 0.260 0.348 3(10) 150.0
    C(11)-H(11F)…F(5) 0.096 0.262 0.328 9(10) 125.1
    2
    C(5)-H(5)…O(1) 0.093 0.237 0.319 146
    C(76)-H(76A)…O(2) 0.097 0.245 0.339 162
    C(73)-H(73)…O(2) 0.093 0.244 0.328 151
    C(51)-H(51)…O(3) 0.093 0.262 0.350 158
    C(7)-H(7)…O(5) 0.093 0.249 0.335 154
    C(10)-H(10B)…O(5) 0.097 0.292 0.366 134
    C(55)-H(55A)…O(6) 0.096 0.277 0.353 137
    C(57)-H(57A)…O(6) 0.097 0.294 0.364 130
    C(24)-H(24A)…O(7) 0.097 0.269 0.347 138
    C(27)-H(27)…O(7) 0.093 0.261 0.340 143
    C(82)-H(82)…O(8) 0.093 0.265 0.336 134
    C(79)-H(79B)…O(8) 0.097 0.230 0.315 146
    C(44)-H(44C)…F(23) 0.096 0.246 0.324 139
    C(86)-H(86)…F(24) 0.093 0.279 0.348 131
    C(10)-H(10B)…F(21) 0.097 0.266 0.343 137
    C(55)-H(55C)…F(21) 0.096 0.287 0.376 156
    C(87)-H(87)…F(22) 0.093 0.249 0.335 153
    C(57)-H(57B)…F(22) 0.097 0.272 0.364 160
    C(77)-H(77C)…F(14) 0.096 0.245 0.335 155
    C(14)-H(14)…F(16) 0.093 0.251 0.341 161
    C(68)-H(68)…F(13) 0.093 0.286 0.370 151
    C(23)-H(23C)…F(5)ⅹⅰ 0.096 0.276 0.367 158
    C(23)-H(23C)…F(3)ⅹⅰ 0.096 0.253 0.336 145
    C(21)-H(21A)···F(1)ⅹⅰ 0.097 0.274 0.364 154
    C(10)-H(10A)…F(7) 0.097 0.239 0.327 150
    C(76)-H(76B)…F(12)ⅹⅱ 0.097 0.287 0.355 164
    C(78)-H(78C)…F(12)ⅹⅱ 0.096 0.260 0.359 133
    C(65)-H(65)…F(6)ⅹⅲ 0.093 0.251 0.324 135
    C(79)-H(79A)…F(6)ⅹⅲ 0.097 0.250 0.335 147
    C(37)-H(37)…F(16)ⅹⅳ 0.093 0.270 0.348 142
    C(43)-H(43A)…F(18)ⅹⅴ 0.097 0.257 0.333 136
    C(77)-H(77C)…F(18)ⅹⅴ 0.096 0.266 0.339 133
    C(14)-H(14)…F(17)ⅹⅵ 0.093 0.258 0.326 130
    C(69)-H(69)…F(15)ⅹⅶ 0.093 0.248 0.327 142
    C(76)-H(76B)…F(8) 0.097 0.268 0.349 141
    C(46)-H(46)…F(8) 0.093 0.260 0.346 153
    Symmetry codes: x+1/2, y, -z+3/2; x-1, y, z for 1; -x, 1-y, 1-z; 1-x, 2-y, 1-z; -1+x, -1+y, z; 2-x, 2-y, -z; ⅹⅰ -1+x, y, z; ⅹⅱ 1-x, 1-y, -z; ⅹⅲ x, 1+y, z; ⅹⅳ 1-x, 1-y, -z; ⅹⅴ -1+x, y, z; ⅹⅵ 1-x, 1-y, 1-z; ⅹⅶ 2-x, 2-y, 1-z for 2.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  739
  • HTML全文浏览量:  47
文章相关
  • 发布日期:  2019-08-10
  • 收稿日期:  2018-11-26
  • 修回日期:  2019-05-22
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章