Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2

Kun Gao Yi-Yang Zhu Da-Qing Tong Li Tian Zhao-Hui Wang Xiao-Zu Wang

Citation:  Kun Gao, Yi-Yang Zhu, Da-Qing Tong, Li Tian, Zhao-Hui Wang, Xiao-Zu Wang. Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2[J]. Chinese Chemical Letters, 2014, 25(2): 383-386. shu

Hydrothermal synthesis of single-crystal CeCO3OH and their thermal conversion to CeO2

    通讯作者: Xiao-Zu Wang,
  • 基金项目:

    This work was supported financially by the Program for Innovative Research Team in Jiangsu Province (No. SZK [2011]87) (No. SZK [2011]87)

    Innovative Talents IntroductionPlan(No. SZT[2011]43)  (No. SZT[2011]43)

    Special Research Foundation of Young teachers of Nanjing University of Technology (No. 39701007). (No. 39701007)

摘要: Hexagonal single-crystalline cerium carbonate hydroxide (CeCO3OH) precursors with dendrite morphologies have been synthesized by a facile hydrothermal method at 180 ℃ using CeCl3·7H2O as the cerium source, triethylenetetramine as both an alkaline and carbon source, with triethylenetetramine also playing an important role in the formation of the dendrite structure. Polycrystalline ceria (CeO2) have been obtained by calcining the precursor at 500 ℃ for 4 h. The morphology of the precursor was partly maintained during the heating process. The optical absorption spectra indicate the CeO2 nano/microstructures have a direct band gap of 2.92 eV, which is lower than values of the bulk powder due to the quantum size effect. The high absorption in the UV region for CeO2 nano/microstructure indicated that this material was expected to be used as UV-blocking materials.

English

  • 
    1. [1] D. Andreeva, I. Ivanov, L. Ilieva, et al., Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: influence of the preparation method, Powder Technol. 333 (2007) 153-160.[1] D. Andreeva, I. Ivanov, L. Ilieva, et al., Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: influence of the preparation method, Powder Technol. 333 (2007) 153-160.

    2. [2] C. Larese, M.L. Granados, F.C. Galisteo, et al., TWC deactivation by lead: a study of the Rh/CeO2 system, Appl. Catal. B 62 (2006) 132-143.[2] C. Larese, M.L. Granados, F.C. Galisteo, et al., TWC deactivation by lead: a study of the Rh/CeO2 system, Appl. Catal. B 62 (2006) 132-143.

    3. [3] Y. Dai, B.D. Li, H.D. Quan, et al., CeCl3·7H2O as an efficient catalyst for one-pot synthesis of b-amino ketones by three-component Mannich reaction, Chin. Chem. Lett. 21 (2010) 31-34.[3] Y. Dai, B.D. Li, H.D. Quan, et al., CeCl3·7H2O as an efficient catalyst for one-pot synthesis of b-amino ketones by three-component Mannich reaction, Chin. Chem. Lett. 21 (2010) 31-34.

    4. [4] M. Hajjami, A.G. Choghamarani, M.A. Zolfigol, et al., An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.[4] M. Hajjami, A.G. Choghamarani, M.A. Zolfigol, et al., An efficient and versatile synthesis of aromatic nitriles from aldehydes, Chin. Chem. Lett. 23 (2012) 1323-1326.

    5. [5] G. Jacobs, L. Williams, U. Graham, et al., Low-temperature water-gas shift: in-situ DRIFTS reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications, J. Phys. Chem. B 107 (2003) 10398-10404.[5] G. Jacobs, L. Williams, U. Graham, et al., Low-temperature water-gas shift: in-situ DRIFTS reaction study of a Pt/CeO2 catalyst for fuel cell reformer applications, J. Phys. Chem. B 107 (2003) 10398-10404.

    6. [6] M.S. Tsai, Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance, Mater. Sci. Eng. B 110 (2004) 132-134.[6] M.S. Tsai, Powder synthesis of nano grade cerium oxide via homogenous precipitation and its polishing performance, Mater. Sci. Eng. B 110 (2004) 132-134.

    7. [7] D.S. Lim, J.W. Ahn, H.S. Park, et al., The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI-CMP, Surf. Coat. Technol. 200 (2005) 1751-1754.[7] D.S. Lim, J.W. Ahn, H.S. Park, et al., The effect of CeO2 abrasive size on dishing and step height reduction of silicon oxide film in STI-CMP, Surf. Coat. Technol. 200 (2005) 1751-1754.

    8. [8] Y.H. Kim, S.K. Kimb, N. Kimb, et al., Crystalline structure of ceria particles controlled by the oxygen partial pressure and STI CMP performances, Ultramicroscopy 108 (2008) 1292-1296.[8] Y.H. Kim, S.K. Kimb, N. Kimb, et al., Crystalline structure of ceria particles controlled by the oxygen partial pressure and STI CMP performances, Ultramicroscopy 108 (2008) 1292-1296.

    9. [9] A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151-157.[9] A.W. Xu, Y. Gao, H.Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles, J. Catal. 207 (2002) 151-157.

    10. [10] D.C. Koskenmaki, K.A. Gschneidner Jr., Handbook on the Physics and Chemistry of Rare Earths, vol. 1, North-Holland, Amsterdam, 1978, pp. 338-340.[10] D.C. Koskenmaki, K.A. Gschneidner Jr., Handbook on the Physics and Chemistry of Rare Earths, vol. 1, North-Holland, Amsterdam, 1978, pp. 338-340.

    11. [11] Y.G. Sun, B. Mayers, Y.N. Xia, Template engaged replacement reaction: a one step approach to the large scale synthesis of metal nanostructures with hollow interiors, Nano Lett. 3 (2003) 675-679.[11] Y.G. Sun, B. Mayers, Y.N. Xia, Template engaged replacement reaction: a one step approach to the large scale synthesis of metal nanostructures with hollow interiors, Nano Lett. 3 (2003) 675-679.

    12. [12] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (1996) 933-937.[12] A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (1996) 933-937.

    13. [13] K. Li, P.S. Zhao, Synthesis and characterization of CeCO3OH one-dimensional quadrangular prisms by a simple method, Mater. Lett. 63 (2009) 2013-2015.[13] K. Li, P.S. Zhao, Synthesis and characterization of CeCO3OH one-dimensional quadrangular prisms by a simple method, Mater. Lett. 63 (2009) 2013-2015.

    14. [14] Z.Y. Guo, F.F. Jian, F.L. Du, Sonochemical synthesis of luminescent CeCO3OH onedimensional quadrangular prisms, Mater. Res. Bull. 207 (2011) 35-41.[14] Z.Y. Guo, F.F. Jian, F.L. Du, Sonochemical synthesis of luminescent CeCO3OH onedimensional quadrangular prisms, Mater. Res. Bull. 207 (2011) 35-41.

    15. [15] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and characterization of singlecrystal Ce(OH)CO3 and CeO2 triangular microplates, Inorg. Chem. 45 (2006) 4167-4169.[15] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and characterization of singlecrystal Ce(OH)CO3 and CeO2 triangular microplates, Inorg. Chem. 45 (2006) 4167-4169.

    16. [16] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and Characterization of bundle-like structures consisting of single crystal Ce(OH)CO3 nanorods, Mater. Lett. 61 (2007) 694-696.[16] Z.Y. Guo, F.L. Du, G.C. Li, et al., Synthesis and Characterization of bundle-like structures consisting of single crystal Ce(OH)CO3 nanorods, Mater. Lett. 61 (2007) 694-696.

    17. [17] M.Y. Cui, J.X. He, N.P. Lu, et al., Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology, Mater. Chem. Phys. 121 (2010) 314-319.[17] M.Y. Cui, J.X. He, N.P. Lu, et al., Morphology and size control of cerium carbonate hydroxide and ceria micro/nanostructures by hydrothermal technology, Mater. Chem. Phys. 121 (2010) 314-319.

    18. [18] Z.Y. Guo, F.L. Du, G.C. Li, et al., Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2, Mater. Chem. Phys. 113 (2009) 53-56.[18] Z.Y. Guo, F.L. Du, G.C. Li, et al., Hydrothermal synthesis of single-crystalline CeCO3OH flower-like nanostructures and their thermal conversion to CeO2, Mater. Chem. Phys. 113 (2009) 53-56.

    19. [19] E.L. Qi, L.Y. Man, S.H. Wang, et al., Microwave homogeneous synthesis and photocatalytic property of CeO2 nanorods, Chin. J. Mater. Res. 25 (2011) 221-224.[19] E.L. Qi, L.Y. Man, S.H. Wang, et al., Microwave homogeneous synthesis and photocatalytic property of CeO2 nanorods, Chin. J. Mater. Res. 25 (2011) 221-224.

    20. [20] L. Yan, R.B. Yu, J. Chen, et al., Template-free hydrothermal synthesis of CeO2 nanooctahedrons and nanorods: investigation of the morphology evolution, Cryst. Growth Des. 8 (2008) 1474-1477.[20] L. Yan, R.B. Yu, J. Chen, et al., Template-free hydrothermal synthesis of CeO2 nanooctahedrons and nanorods: investigation of the morphology evolution, Cryst. Growth Des. 8 (2008) 1474-1477.

    21. [21] X.J. Yang, X.P. Li, X.T. Bai, et al., Facile synthesis and characterization of uniform CdS colloidal spheres, Chin. Chem. Lett. 23 (2012) 1091-1094.[21] X.J. Yang, X.P. Li, X.T. Bai, et al., Facile synthesis and characterization of uniform CdS colloidal spheres, Chin. Chem. Lett. 23 (2012) 1091-1094.

    22. [22] W.T. Yao, S.H. Yu, Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures, Int. J. Nanotechnol. 4 (2007) 129-162.[22] W.T. Yao, S.H. Yu, Recent advances in hydrothermal syntheses of low dimensional nanoarchitectures, Int. J. Nanotechnol. 4 (2007) 129-162.

    23. [23] D. Zhao, J.S. Tan, Q.Q. Ji, et al., Mn2O3 nanomaterials: facile synthesis and electrochemical properties, Chin. J. Inorg. Chem. 26 (2010) 832-838.[23] D. Zhao, J.S. Tan, Q.Q. Ji, et al., Mn2O3 nanomaterials: facile synthesis and electrochemical properties, Chin. J. Inorg. Chem. 26 (2010) 832-838.

    24. [24] Z.H. Han, N. Guo, K.B. Tang, et al., Hydrothermal crystal growth and characterization of cerium hydroxycarbonates, J. Cryst. Growth 219 (2000) 315-318.[24] Z.H. Han, N. Guo, K.B. Tang, et al., Hydrothermal crystal growth and characterization of cerium hydroxycarbonates, J. Cryst. Growth 219 (2000) 315-318.

    25. [25] C.H. Lu, H.C. Wang, Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process, Mater. Sci. Eng. B90 (2002) 138-141.[25] C.H. Lu, H.C. Wang, Formation and microstructural variation of cerium carbonate hydroxide prepared by the hydrothermal process, Mater. Sci. Eng. B90 (2002) 138-141.

    26. [26] K. Li, P.S. Zhao, Synthesis of single-crystalline Ce(CO3)(OH) with novel dendrite morphology and their thermal conversion to CeO2, Mater. Res. Bull. 45 (2010) 243-246.[26] K. Li, P.S. Zhao, Synthesis of single-crystalline Ce(CO3)(OH) with novel dendrite morphology and their thermal conversion to CeO2, Mater. Res. Bull. 45 (2010) 243-246.

    27. [27] Z. Wang, M.X. Fang, Y.L. Pan, et al., Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis, Chem. Eng. Sci. 93 (2013) 238-249.[27] Z. Wang, M.X. Fang, Y.L. Pan, et al., Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis, Chem. Eng. Sci. 93 (2013) 238-249.

    28. [28] Y.W. Zhang, R. Si, C.S. Liao, et al., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals, J. Phys. Chem. B 107 (2003) 10159-10167.[28] Y.W. Zhang, R. Si, C.S. Liao, et al., Facile alcohothermal synthesis, size-dependent ultraviolet absorption, and enhanced CO conversion activity of ceria nanocrystals, J. Phys. Chem. B 107 (2003) 10159-10167.

    29. [29] N. Imanaka, T. Masui, H. Hirai, et al., Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials, Chem. Mater. 15 (2003) 2289-2291.[29] N. Imanaka, T. Masui, H. Hirai, et al., Amorphous cerium-titanium solid solution phosphate as a novel family of band gap tunable sunscreen materials, Chem. Mater. 15 (2003) 2289-2291.

    30. [30] S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 x nanoparticles, J. Appl. Phys. 87 (1999) 1318-1321.[30] S. Tsunekawa, T. Fukuda, A. Kasuya, Blue shift in ultraviolet absorption spectra of monodisperse CeO2 x nanoparticles, J. Appl. Phys. 87 (1999) 1318-1321.

    31. [31] Y.B. Yin, X. Shao, L.M. Zhao, et al., Synthesis and characterization of CePO4 nanowires via microemulsion method at room temperature, Chin. Chem. Lett. 20 (2009) 857-860.[31] Y.B. Yin, X. Shao, L.M. Zhao, et al., Synthesis and characterization of CePO4 nanowires via microemulsion method at room temperature, Chin. Chem. Lett. 20 (2009) 857-860.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2013-08-10
  • 网络出版日期:  2013-09-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章