Oxidative intramolecular coupling of 2, 3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide

De-Rong Ji Hua Yang Xiao-Jing Zhao Hao Yang Yang-Zhao Liu Dai-Hui Liao Chun Feng Cheng-Gang Zhang

Citation:  De-Rong Ji, Hua Yang, Xiao-Jing Zhao, Hao Yang, Yang-Zhao Liu, Dai-Hui Liao, Chun Feng, Cheng-Gang Zhang. Oxidative intramolecular coupling of 2, 3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide[J]. Chinese Chemical Letters, 2014, 25(2): 348-350. shu

Oxidative intramolecular coupling of 2, 3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide

    通讯作者: Cheng-Gang Zhang,
  • 基金项目:

    The authors are grateful to Sichuan Provincial Education Department (No. 12ZA141)  (No. 12ZA141)

    Key Laboratory of Advanced Functional Materials of Sichuan Province Higher Education System (No. KFKT2013-01)  (No. KFKT2013-01)

    Sichuan Normal University (No. XYZ2013- 14-37) for financial support. (No. XYZ2013- 14-37)

摘要: Polymethoxy-substituted phenanthrene-9-carboxylic acids or theirmethylate are key intermediates for the synthesis of tylophora alkaloids and their analogs. An intramolecular oxidative coupling reaction of unfunctionalized 2,3-disubstituted phenyl acrylic acids and derivatives promoted by di-tert-butylperoxide gave above intermediates in high yields. The mild reaction conditions and easy purification procedures of this method provide a new approach for the synthesis of phenanthrenes.

English

  • 
    1. [1] (a) V. Ritleng, C. Sirlin, M. Pfeffer, Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects, Chem. Rev. 102 (2002) 1731-1770; (b) Y.Q. He, N.N. Zhang, Y. Liu, et al., Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide, Chin. Chem. Lett. 23 (2012) 41- 44; (c) W.P. Mai, H.H. Wang, J.W. Yuan, L.R. Yang, Z.C. Li, Palladium-catalyzed suzuki couplings using a novel diaminophosphine oxide as ligand, Chin. Chem. Lett. 23 (2012) 521-524.[1] (a) V. Ritleng, C. Sirlin, M. Pfeffer, Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects, Chem. Rev. 102 (2002) 1731-1770; (b) Y.Q. He, N.N. Zhang, Y. Liu, et al., Facile synthesis and excellent catalytic activity of gold nanoparticles on graphene oxide, Chin. Chem. Lett. 23 (2012) 41- 44; (c) W.P. Mai, H.H. Wang, J.W. Yuan, L.R. Yang, Z.C. Li, Palladium-catalyzed suzuki couplings using a novel diaminophosphine oxide as ligand, Chin. Chem. Lett. 23 (2012) 521-524.

    2. [2] (a) T. Naota, H. Takaya, S.I. Muragashi, Ruthenium-catalyzed reactions for organic synthesis, Chem. Rev. 98 (1998) 2599-2660; (b) D.F. Wu, M.J. Yang, Y. Wang, G.W. Gao, J. Men, A facile and efficient synthetic method for 4-phenylethynylphthalic anhydride, Chin. Chem. Lett. 22 (2011) 159- 162.[2] (a) T. Naota, H. Takaya, S.I. Muragashi, Ruthenium-catalyzed reactions for organic synthesis, Chem. Rev. 98 (1998) 2599-2660; (b) D.F. Wu, M.J. Yang, Y. Wang, G.W. Gao, J. Men, A facile and efficient synthetic method for 4-phenylethynylphthalic anhydride, Chin. Chem. Lett. 22 (2011) 159- 162.

    3. [3] X.W. Guo, Z.P. Li, C.J. Li, Cross-dehydrogenative-coupling (CDC) reaction, Prog. Chem. 22 (2010) 1434-1441.[3] X.W. Guo, Z.P. Li, C.J. Li, Cross-dehydrogenative-coupling (CDC) reaction, Prog. Chem. 22 (2010) 1434-1441.

    4. [4] Z.P. Li, C.J. Li, CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom, J. Am. Chem. Soc. 126 (2004) 11810-11811.[4] Z.P. Li, C.J. Li, CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom, J. Am. Chem. Soc. 126 (2004) 11810-11811.

    5. [5] (a) C. Bolm, J. Legros, J. Le Pail, L. Zani, Iron-catalyzed reactions in organic synthesis, Chem. Rev. 104 (2004) 6217-6254; (b) Y. Song, X.S. Tang, X.M. Hou, Y.J. Bai, Advances of iron(Ⅲ) chloride-catalyzed organic reactions, Chin. J. Org. Chem. 33 (2013) 76-89.[5] (a) C. Bolm, J. Legros, J. Le Pail, L. Zani, Iron-catalyzed reactions in organic synthesis, Chem. Rev. 104 (2004) 6217-6254; (b) Y. Song, X.S. Tang, X.M. Hou, Y.J. Bai, Advances of iron(Ⅲ) chloride-catalyzed organic reactions, Chin. J. Org. Chem. 33 (2013) 76-89.

    6. [6] K.L. Hull, E.L. Lanni, M.S. Sanford, Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations, J. Am. Chem. Soc. 128 (2006) 14047-14049.[6] K.L. Hull, E.L. Lanni, M.S. Sanford, Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations, J. Am. Chem. Soc. 128 (2006) 14047-14049.

    7. [7] G.J. Deng, C.J. Li, Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes, Org. Lett. 11 (2009) 1171-1174.[7] G.J. Deng, C.J. Li, Sc(OTf)3-catalyzed direct alkylation of quinolines and pyridines with alkanes, Org. Lett. 11 (2009) 1171-1174.

    8. [8] A. Sud, D. Sureshkumar, M. Klussmann, Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis, Chem. Commun. (2009) 3169- 3171.[8] A. Sud, D. Sureshkumar, M. Klussmann, Oxidative coupling of amines and ketones by combined vanadium- and organocatalysis, Chem. Commun. (2009) 3169- 3171.

    9. [9] Z.G. Li, Z. Jin, R.Q. Huang, Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids, Synthesis (2001) 2365-2378.[9] Z.G. Li, Z. Jin, R.Q. Huang, Isolation, total synthesis and biological activity of phenanthroindolizidine and phenanthroquinolizidine alkaloids, Synthesis (2001) 2365-2378.

    10. [10] C.G. Zhang, J.J. Li, X.H. Wang, C. Feng, B.Q. Wang, Progress on relationship of tylophora alkaloids and their antitumor activity, Chin. J. Med. Chem. 20 (2010) 379-388.[10] C.G. Zhang, J.J. Li, X.H. Wang, C. Feng, B.Q. Wang, Progress on relationship of tylophora alkaloids and their antitumor activity, Chin. J. Med. Chem. 20 (2010) 379-388.

    11. [11] (a) K. Kim, T. Lee, E. Lee, et al., Asymmetric total syntheses of (-)-antofine and (-)- cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol, J. Org. Chem. 69 (2004) 3144-3149; (b) A. Camacho-Davila, J.W. Herndon, Total synthesis of antofine using the net [5 + 5]-cycloaddition of γ,δ-unsaturated carbene complexes and 2-alkynylphenyl ketones as a key step, J. Org. Chem. 71 (2006) 6682-6685; (c) K. Kim, Y.M. Lee, J. Lee, et al., Expedient syntheses of antofine and cryptopleurine via intramolecular 1,3-dipolar cycloaddition, J. Org. Chem. 72 (2007) 4886-4891.[11] (a) K. Kim, T. Lee, E. Lee, et al., Asymmetric total syntheses of (-)-antofine and (-)- cryptopleurine using (R)-(E)-4-(tributylstannyl)but-3-en-2-ol, J. Org. Chem. 69 (2004) 3144-3149; (b) A. Camacho-Davila, J.W. Herndon, Total synthesis of antofine using the net [5 + 5]-cycloaddition of γ,δ-unsaturated carbene complexes and 2-alkynylphenyl ketones as a key step, J. Org. Chem. 71 (2006) 6682-6685; (c) K. Kim, Y.M. Lee, J. Lee, et al., Expedient syntheses of antofine and cryptopleurine via intramolecular 1,3-dipolar cycloaddition, J. Org. Chem. 72 (2007) 4886-4891.

    12. [12] (a) D.A. Evans, C.J. Dinsmore, D.A. Evrard, K.M. Devries, Oxidative coupling of arylglycine-containing peptides. A biomimetic approach to the synthesis of the macrocyclic actinoidinic-containing vancomycin subunit, J. Am. Chem. Soc. 115 (1993) 6426-6427; (b) E.C. Taylor, J.G. Andrade, G.J.H. Rall, A. Mckillop, Thallium in organic synthesis. 59. Alkaloid synthesis via intramolecular nonphenolic oxidative coupling. Preparation of (±)-ocoteine, (±)-acetoxyocoxylonine, (±)-3-methoxy-n-acetylnornantenine, (±)-neolitsine, (±)-kreysigine, (±)-O-methylkreysigine, and (±)- multifloramine, J. Am. Chem. Soc. 102 (1980) 6513-6519; (c) K.L. Wang, M.Y. Lü, Q.M. Wang, R.Q. Huang, Iron(Ⅲ) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids, Tetrahedron 64 (2008) 7504-7510.[12] (a) D.A. Evans, C.J. Dinsmore, D.A. Evrard, K.M. Devries, Oxidative coupling of arylglycine-containing peptides. A biomimetic approach to the synthesis of the macrocyclic actinoidinic-containing vancomycin subunit, J. Am. Chem. Soc. 115 (1993) 6426-6427; (b) E.C. Taylor, J.G. Andrade, G.J.H. Rall, A. Mckillop, Thallium in organic synthesis. 59. Alkaloid synthesis via intramolecular nonphenolic oxidative coupling. Preparation of (±)-ocoteine, (±)-acetoxyocoxylonine, (±)-3-methoxy-n-acetylnornantenine, (±)-neolitsine, (±)-kreysigine, (±)-O-methylkreysigine, and (±)- multifloramine, J. Am. Chem. Soc. 102 (1980) 6513-6519; (c) K.L. Wang, M.Y. Lü, Q.M. Wang, R.Q. Huang, Iron(Ⅲ) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids, Tetrahedron 64 (2008) 7504-7510.

    13. [13] D.R. Ji, L.D. Su, C.G. Zhang, Intramolecular oxidative coupling reaction of 4- phenylmethyl-ene-3-isochromanones with 2,3-dichloro-5,6-dicyanobenzo-quinone as an oxidant, Chin. J. Org. Chem. 32 (2012) 2334-2338.[13] D.R. Ji, L.D. Su, C.G. Zhang, Intramolecular oxidative coupling reaction of 4- phenylmethyl-ene-3-isochromanones with 2,3-dichloro-5,6-dicyanobenzo-quinone as an oxidant, Chin. J. Org. Chem. 32 (2012) 2334-2338.

    14. [14] Z.W. Wang, M. Wu, Y. Wang, et al., Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents, Eur. J. Med. Chem. 51 (2012) 250-258.[14] Z.W. Wang, M. Wu, Y. Wang, et al., Synthesis and SAR studies of phenanthroindolizidine and phenanthroquinolizidine alkaloids as potent anti-tumor agents, Eur. J. Med. Chem. 51 (2012) 250-258.

    15. [15] K.L. Wang, M.Y. Lü, A. Yu, X.Q. Zhu, Q.M. Wang, Iron(Ⅲ) chloride catalyzed oxidative coupling of aromatic nuclei, J. Org. Chem. 74 (2009) 935-938.[15] K.L. Wang, M.Y. Lü, A. Yu, X.Q. Zhu, Q.M. Wang, Iron(Ⅲ) chloride catalyzed oxidative coupling of aromatic nuclei, J. Org. Chem. 74 (2009) 935-938.

    16. [16] T.F. Buckley Ⅲ, R. Henry, Amino acids as chiral educts for asymmetric products. Chirally specific syntheses of tylophorine and cryptopleurine, J. Org. Chem. 48 (1983) 4222-4232.[16] T.F. Buckley Ⅲ, R. Henry, Amino acids as chiral educts for asymmetric products. Chirally specific syntheses of tylophorine and cryptopleurine, J. Org. Chem. 48 (1983) 4222-4232.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2013-07-06
  • 网络出版日期:  2013-10-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章