燃煤电站锅炉颗粒Hg形态及其释放动力学参数

殷立宝 高正阳 徐齐胜 郑双清 钟俊 陈传敏

引用本文: 殷立宝, 高正阳, 徐齐胜, 郑双清, 钟俊, 陈传敏. 燃煤电站锅炉颗粒Hg形态及其释放动力学参数[J]. 燃料化学学报, 2013, 41(12): 1451-1458. shu
Citation:  YIN Li-bao, GAO Zheng-yang, XU Qi-sheng, ZHENG Shuang-qing, ZHONG Jun, CHEN Chuan-min. Analysis of species and thermal stability of particulate-bound mercury in coal-fired boiler[J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1451-1458. shu

燃煤电站锅炉颗粒Hg形态及其释放动力学参数

    通讯作者: 殷立宝,Tel:13825135631;E-mail:yinlibao@yahoo.com.cn。
  • 基金项目:

    国家自然科学基金(51076045) 

摘要: 采集了一台320 MW机组锅炉在三个过量空气系数下的飞灰样品,将采集的飞灰筛分为四个粒径,测定了各飞灰样品的含炭量;对各飞灰样品进行两种加热方式的热处理,利用LUMEX全自动测汞仪测定了处理前后各飞灰样品的汞含量。根据飞灰中汞随温度的释放规律确定了飞灰中汞的形态,对加热过程颗粒Hg释放动力学参数进行了计算。测试与分析结果表明,粒径小的灰颗粒中汞浓度较高;过量空气系数增加后,飞灰含碳量降低,但飞灰中汞随过量空气系数的变化随粒径的不同有所不同;飞灰中含汞化合物的主要形态为HgCl2和HgS,过量空气系数增加,飞灰中HgCl2比例减少,HgS比例增加,HgO与HgSO4的比例基本不变。停留时间是影响颗粒Hg生成的关键因素。过量空气系数越大,灰颗粒Hg释放的活化能就越大,大颗粒飞灰Hg释放活化能相对较大。

English

  • 
    1. [1] Environmental Protection Agency, Office of Quality Planning and Stabdards and Office of Research and Development. Mercury study report to congress; EPA452r/R-97-003[R]. Washington, DC: U. S. 1997.[1] Environmental Protection Agency, Office of Quality Planning and Stabdards and Office of Research and Development. Mercury study report to congress; EPA452r/R-97-003[R]. Washington, DC: U. S. 1997.

    2. [2] MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: anthropogenic influences[J]. Geochim Cosmochim Ac, 1994, 58(15): 3191-3198.[2] MASON R P, FITZGERALD W F, MOREL F M M. The biogeochemical cycling of elemental mercury: anthropogenic influences[J]. Geochim Cosmochim Ac, 1994, 58(15): 3191-3198.

    3. [3] PARK K S, SEO Y C, LEE S J, LEE J H. Emission and speciation of mercury from various combustion sources[J]. Powder Technol, 2008, 180(1/2): 151-156.[3] PARK K S, SEO Y C, LEE S J, LEE J H. Emission and speciation of mercury from various combustion sources[J]. Powder Technol, 2008, 180(1/2): 151-156.

    4. [4] ZHONG L P, CAO Y, LI W Y, PAN W P, XIE K C. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 641-646.[4] ZHONG L P, CAO Y, LI W Y, PAN W P, XIE K C. Effect of the existing air pollutant control devices on mercury emission in coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, 2010, 38(6): 641-646.

    5. [5] WANG J, WANG W, XU W, WANG X, ZHAO S. Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J]. J Environ Sci-China, 2011, 23(11): 1839-1844.[5] WANG J, WANG W, XU W, WANG X, ZHAO S. Mercury removals by existing pollutants control devices of four coal-fired power plants in China[J]. J Environ Sci-China, 2011, 23(11): 1839-1844.

    6. [6] CHEN L, DUAN Y F, ZHUO Y Q, YANG L G, ZHANG L, YANG X H, YAO Q, JIANG Y M, XU X C. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.[6] CHEN L, DUAN Y F, ZHUO Y Q, YANG L G, ZHANG L, YANG X H, YAO Q, JIANG Y M, XU X C. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition[J]. Fuel, 2007, 86(4): 603-610.

    7. [7] SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Process Technol, 2000, 65: 423-424.[7] SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Process Technol, 2000, 65: 423-424.

    8. [8] 王帅, 高继慧, 吴燕燕, 汪细河, 吴少华. 燃煤烟气NO/SO2 对Cl/Cl2 形成过程的影响机制[J]. 中国电机工程学报, 2010, 30(20): 33-38. (WANG Shuai, GAO Ji-hui, WU Yan-yan, WANG xi-he, WU shao-hua. Effect mechanism of NO/SO2 on Cl/Cl2 formation in coal-fired flue gas[J]. Proceedings of the CSEE, 2010, 30(20): 33-38.)[8] 王帅, 高继慧, 吴燕燕, 汪细河, 吴少华. 燃煤烟气NO/SO2 对Cl/Cl2 形成过程的影响机制[J]. 中国电机工程学报, 2010, 30(20): 33-38. (WANG Shuai, GAO Ji-hui, WU Yan-yan, WANG xi-he, WU shao-hua. Effect mechanism of NO/SO2 on Cl/Cl2 formation in coal-fired flue gas[J]. Proceedings of the CSEE, 2010, 30(20): 33-38.)

    9. [9] SABLE S P, JONG W, SPLIETHOFF H. Combined Homo-and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases[J]. Energy Fuels, 2008, 22(1): 321-330.[9] SABLE S P, JONG W, SPLIETHOFF H. Combined Homo-and heterogeneous model for mercury speciation in pulverized fuel combustion flue gases[J]. Energy Fuels, 2008, 22(1): 321-330.

    10. [10] 杨立国, 段钰锋, 杨祥花, 江贻满, 王运军, 赵长遂. 燃煤电厂汞排放特性实验研究[J]. 东南大学学报(自然科学版), 2007, 37(5): 817-821. (YANG Li-guo, DUAN Yu-feng, YANG Xiang-hua, JIANG Yi-man, WANG Yun-jun, ZHAO Chang-sui. Mercury emission characteristics from coal-fired power plants[J]. Journal of Southeast University(Natural Science Edition), 2007, 37(5): 817-821.)[10] 杨立国, 段钰锋, 杨祥花, 江贻满, 王运军, 赵长遂. 燃煤电厂汞排放特性实验研究[J]. 东南大学学报(自然科学版), 2007, 37(5): 817-821. (YANG Li-guo, DUAN Yu-feng, YANG Xiang-hua, JIANG Yi-man, WANG Yun-jun, ZHAO Chang-sui. Mercury emission characteristics from coal-fired power plants[J]. Journal of Southeast University(Natural Science Edition), 2007, 37(5): 817-821.)

    11. [11] 王起超, 沈文国, 麻壮伟. 中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321. (WANG Qi-chao, SHEN Wen-guo, MA Zhuang-wei. Theestimation of mercury emission from coal combustion in China[J]. China Environmental Science, 1999, 19(4): 318-321(in Chinese).)[11] 王起超, 沈文国, 麻壮伟. 中国燃煤汞排放量估算[J]. 中国环境科学, 1999, 19(4): 318-321. (WANG Qi-chao, SHEN Wen-guo, MA Zhuang-wei. Theestimation of mercury emission from coal combustion in China[J]. China Environmental Science, 1999, 19(4): 318-321(in Chinese).)

    12. [12] 姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1): 31-37. (YAO Duo-xi, ZHI Xia-chen, ZHENG Bao-shan. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1): 31-37.)[12] 姚多喜, 支霞臣, 郑宝山. 煤燃烧过程中5种微量元素的迁移和富集[J]. 环境化学, 2004, 23(1): 31-37. (YAO Duo-xi, ZHI Xia-chen, ZHENG Bao-shan. The transformation and concentration of 5 trace elements during coal combustion[J]. Environmental Chemistry, 2004, 23(1): 31-37.)

    13. [13] GALE T K, LANI B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Process Technol, 2008, 89(2): 139-151.[13] GALE T K, LANI B W, OFFEN G R. Mechanisms governing the fate of mercury in coal-fired power systems[J]. Fuel Process Technol, 2008, 89(2): 139-151.

    14. [14] ANTONIA L-A M, MERCEDES D-S, ROSA M-T M. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content[J]. Ind Eng Chem Res, 2007, 46(3): 927-931.[14] ANTONIA L-A M, MERCEDES D-S, ROSA M-T M. Mercury retention by fly ashes from coal combustion: Influence of the unburned carbon content[J]. Ind Eng Chem Res, 2007, 46(3): 927-931.

    15. [15] LOPEZ-ANTON M A, YANG Y, PERRY R, MAROTO-VALER M M. Analysis of mercury species present during coal combusti on by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.[15] LOPEZ-ANTON M A, YANG Y, PERRY R, MAROTO-VALER M M. Analysis of mercury species present during coal combusti on by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.

    16. [16] VIDIC R D, MCLAUGHLIN J B. Uptake of elemental mercury vapors by activated carbons[J]. J Air Waste Manage, 1996, 46(3): 241-250.[16] VIDIC R D, MCLAUGHLIN J B. Uptake of elemental mercury vapors by activated carbons[J]. J Air Waste Manage, 1996, 46(3): 241-250.

    17. [17] VIDIC R D, CHANG M T, THURNAU R C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons[J]. J Air Waste Manage, 1998, 48(3): 247-255.[17] VIDIC R D, CHANG M T, THURNAU R C. Kinetics of vapor-phase mercury uptake by virgin and sulfur-impregnated activated carbons[J]. J Air Waste Manage, 1998, 48(3): 247-255.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  0
  • HTML全文浏览量:  0
文章相关
  • 收稿日期:  2013-03-19
  • 网络出版日期:  2013-06-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章